
NICK HAMPSHIRE

VIC

GRAPHICS

NICK HAMPSHIRE

DUCKWORTH

Second impression April 1 983
First published in March 1983 by

Gerald Duckworth & Co. Ltd

The Old Piano Factory

43 Gloucester Crescent, London NW1

© 1983 by Nick Hampshire

All rights reserved. No part of this publication

may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means,

or otherwise, without the prior permission of the

publisher.

ISBN 0-7156-1702-8

British Library Cataloguing in Publication Data

Hampshire, Nick

Vic Graphics.

1. Computer graphics

2. VIC (Computer)
I. Title

001.64'43 T385
ISBN 0-7156-1702-8

Typeset by Centrepoint Typesetters Ltd, London
Printed and bound in Great Britain by
Redwood Burn Ltd, Trowbridge, Wilts

CONTENTS
Colour plotting 7
High resolution graphics 29
Graph plotting 87
Using the video memory 99
Scaling and stretching 117
Rotating and moving 1 37
3D displays 159

AN OVERVIEW

The provision of low cost high resolution colour graphics is

probably one of the most exciting and challenging features of a

popular home computer like the VIC. With these features a whole
new range of exciting applications are opened up for the adven-
turous programmer. Applications which involve the true visual

display of concepts, ideas, and fantasies. In this book I hope to

show you how to realise some of the graphics display potential

possessed by your machine.

To stimulate your imagination let's first look at some of the

possibilities presented by a high resolution colour graphics

computer. Perhaps the most obvious application is in simulations,

and the most obvious use of simulations is in education. There is

an old saying when trying to explain a concept, that a picture is

worth a thousand words. This is particularly true in all science
related subjects. Relationships can be shown between two or

more mathematical functions displayed as curves on the screen,

or a mathematical process such as differentiation can be shown
graphically taking place. In chemistry three dimensional graphics

can be used to show molecular structures and bonding. A
chemical process can be displayed and the various reactions

simulated by the computer.

Some of the best examples of simulations involving high reso-

lution colour computer graphics come from physics. The teacher

has the ability to display the concepts of mechanics, such as

Newton's laws, the trajectory of a missile or planetary motion.
Magnetic and electrostatic fields and their interrelationship can
easily be displayed, as can the path of light through optical

systems. In electronics the computer can be used to simulate a

circuit and the high resolution graphics used to display the circuit

on the screen.

Computer games — which are in the majority of cases just a

special fun form of simulation — are obvious candidates for

improvement by the use of high resolution colour graphics dis-

plays. Although the VIC still cannot match the incredible real time

and very realistic displays found on many of the best arcade
games, the quality of the home computer's graphics does allow
for the programming of some fantastic display based games. Iwall

these games programs the graphics display is augmented by the

sound generation ability of the VIC. The range of computer
games is enormous, ranging from arcade games like Space

Invaders or Packman to chess programs with a high quality
display of a chess board and all the pieces, or the fantasy games
like Adventure which can be endowed with some very interesting
graphics.

Computer art is an application for high resolution colour
computer graphics in which a growing number of people are
becoming interested. The artist uses the graphics display as a
canvas on which the picture or design is drawn either in a single
colour or using all the colours available on the computer. The
picture is created by using either a specially written program and
an input data base to generate the display, or a light pen or
joystick to interactively paint the picture on the screen, much as
one would using a paint brush. Such dislays could of course be
either a static one off picture or an animated sequence. The
generation of animated computer art displays is a subject of
increasing interest to creators of cartoon films; this should be
within the capabilities of a home computer like the VIC. An
example of such graphics was shown in the film 'Star Wars' in

the scene where the rebel pilots are briefed on the workings of
the 'Death Star'. Full length feature animated films generated by
computer can be expected within the next year.

An important application for graphics simulation is using three
dimensional graphics software to aid the designing of buildings or
engineering structures. This is known as CAD, or Computer
Aided Design, and although in commercial applications confined
to very large fast computers it is quite possible to perform most
of the CAD operations on a machine like the VIC. The designer
builds up a model in the computer memory, and can using this
data base view the structure from any angle or even go inside.

Perspective, light and dark shading, surface texture and colour of
solids can all be emulated by such software; some examples of
routines to do these functions are given in the last section of this
book. Another variation of this type of application is used in flight
simulators, where the computer using a previously entered data
base, creates a simulated display of a piece of terrain or an airfield
as the person using the simulator would see it from any position
in three dimensional space. In a flight simulator the position of
viewing would depend on how the 'pilot' moved his controls.
Simulated landings and take-offs can thus give a visual feedback
to the pilot through the use of such computer graphics.

<2

O

DC
D
O
_J
Oo

COLOUR CONTROL
The colours which can be displayed on the VIC are divided into

two groups. The first group has eight colours, these can be used
for the foreground or video colour, RAM stored colour and the

border. The second group has 1 6 colours which can be used for

the background colour or for the auxiliary colour in the

'Multicolour' mode. The colours available in each of the two
groups are as follows:

AUXILIARY/BACKGROUND BORDER/CHARACTER
Black Black

1 White White
2 Red Red
3 Cyan Cyan
4 Magenta Magenta
5 Green Green
6 Blue Blue

7 Yellow Yellow
8 Orange
9 Light orange
1 Pink

1

1

Light cyan
1 2 Light magenta
1 3 Light green

1 4 Light blue

1 5 Light yellow

Text and graphics displays can be generated in these colours us-

ing the colour codes within the print statements. This is adequate
for the setting of colours in most displays, but when dealing with

high resolution or multicolour displays the commands in the Super
Expander are essential for easy programming. It should be
remembered that colours can only be defined for single character

spaces rather than single display points.

THEORY OF COLOUR PLOTTING
The VIC has two modes of colour operation, 'High resolution'

mode and 'Multicolour' mode. The operating mode employed and
the colours used are determined by the contents of control

registers #15 and # 1 6 of the 6561 and the colour video RAM.
The colour video RAM is located in a 506 byte block of memory
starting at location $9600 (decimal 38400). If there is more than
8K of user memory, the starting location of colour RAM moves
down to $9400 (decimal 37888). The colour video RAM is only

four bits wide; bits 0-2 are used to select the character colour and

8

bit 3 is used to determine if that character is in 'High resolution' or
'Multicolour' mode.
The 'High resolution' mode is selected by having bit 3 of the

video colour RAM set to zero; this is the normal mode of operation.
In this mode there is a one to one correspondence between
character generator bits and the dots displayed on the screen. This
means that all 'one' bits will be displayed as dots of one colour and
all 'zero' bits as dots of another colour. Each character has two
colours, a foreground (all the 'one' bits) and a background colour
(all the 'zero' bits). One of these colours is determined by the first
three bits of the video colour RAM and the other by bits 4-7 of con-
trol register #16.

In normal operation the foreground colour is stored in the video
colour RAM and the background colour, which is common to all

characters displayed on the screen, is stored in register #16. This
can be reversed so that all characters have the same foreground
colour, which is determined by register #16, and different
background colours set by the contents of the colour video RAM.
Whether a common foreground or a common background is

selected depends on the contents of bit 3 of control register #16.
If bit 3 is set to 1 then the display will have different colour
characters on a common background colour; if bit 3 = then all

characters will have the same colour against a different colour
background. In addition to the foreground and background colours
the 6561 allows the colour of the border around the display area
to be changed; this is selected by bits 0-2 of control register # 1 6.

In summary; in 'High resolution' mode the colours used for a
particular character are set by:

1

)

Set bit 3 of register # 1 6 for common background or common
foreground.

common foreground - POKE 36879,PEEK(36879) AND 247
common background - POKE 36879, PEEK(36879) OR 8

2) Set the common background/foreground colour in bits 4-7 of
control register #16. There are 1 6 possible colours and it is the
colour number as shown in the above table which is stored in the
register, as in the following example where variable C is the colour
and is set to a value between and 1 5:

POKE 36879,PEEK(36879) AND 1 5
POKE 36879,PEEK(36879) OR (C* 1 6)

return to normal with - POKE 36879,27
3) Set the border colour in bits 0-2 of control register # 1 6. There
are eight possible border colours and it is the colour number

shown in the above table which is stored in the register, as in the

following example where variable C is the colour and is set to a

value between and 7:

POKE 36879, PEEK(36879) AND 248
POKE 36879, PEEK(36879) OR C

4) Put the colour code for each character to be displayed into the

corresponding location in the colour video RAM. There are eight

possible character colours (see above table) and they are stored in

bits 0-2 of the 506 locations in the colour video RAM . This is done

automatically in a PRINT statement where the character colours

can be embedded in the string as colour commands, but if POKE
commands are used to put characters into the video RAM then the

colour code must also be POKEd into the corresponding location in

the colour RAM. Given the column number — COL, and line

number - LIN, of the display plus the ASCII code of the character

— A, and the colour code for that character — C, the following

routine will put the character and its colour into the correct loca-

tions in the two video RAMs:

100Q = LIN*22 + COL
110 POKE 38400 + Q,C
1 20 POKE 7680 + Q, A

The 'Multicolour' mode is selected by having bit 3 of the video

colour RAM set to one. In this mode there is a two to one cor-

respondence between character generator bits and the dots

displayed on the screen . This means that two bits of the character

generator matrix for that character code correspond to one dot on

the screen, and the colour of that dot is determined by the two bit

code in the character generator.

Unlike the 'High resolution' mode in which only two colours can

be displayed for each character, 'Multicolour' mode allows four

colours per character. However, since two bits of character

generator data correspond to a single dot on the screen the

horizontal resolution is half that of the 'High resolution' mode.

That is, each 8x8 character cell in memory maps onto an 8 x 4

character on screen (8 lines of 4 dots). Each character occupies

the same space in either mode since both modes can be intermix-

ed in a display; this means that a single dot in 'Multicolour' mode
occupies the same space as two horizontal dot positions in the

'High resolution' mode. The amount of memory required for

storage of the 8x4 'multicolour' characters is the same as that re-

quired for the 8x8 characters; the data is simply mapped dif-

10

ferently on screen.

The 'Multicolour' mode is not suitable for use with the ROM-
based character generators but can be very effective when used
with a user definable RAM character generator. This is because
the ROM character generators are designed for 'High resolution'

mode displays where each bit in the character matrix represents a
dot position on the screen. In 'Multicolour' mode the character
generator contains the colour of each dot by using two bits to
represent each display dot; with a ROM character generator most
characters will thus appear as an array of different coloured points
rather than a character. See the section on high resolution for in-

formation on the user of user definable RAM character generators
and high resolution point plotting.

In 'Multicolour' mode the two bits of the character generator
character matrix which represent each screen dot select one of
four colours for that dot. The four codes created by these two bits
tell the 656 1 where to find the colour information for the dot. The
two bit code is not itself a colour code; it is simply a pointer to four
different colour codes; this gives more flexibility as each code
pointed to has either 3 or 4 bit resolution. The use of a simple two
bit pointer, combined with bit 3 of the colour video RAM being us-
ed to determine the colour display mode means that it is possible
to freely intermix 'High resolution' and 'Multicolour' characters in

a display. The colour of the dot can be the background colour, the
foreground colour, the exterior border colour or a special auxiliary
colour, information on which is stored in bits 4-7 of control
register #15. The 'Multicolour' mode select codes are:

— Background colour

1 — Exterior border colour
1 — Foreground colour

1 1 — Auxiliary colour

The use of the 'Multicolour' mode can be summarised using the
following example:

1) Set the background colour to one of 16 colours; this colour
code is stored in the following example in variable C which will

have a value between and 1 5:

POKE 36879,PEEK(36879) AND 1 5
POKE 36879,PEEK(36879) OR (C*16)

2) Set the exterior border colour to one of eight colours; this colour
code will have a value between and 7 and in the following exam-

11

pie is stored in variable C:

POKE 36879. PEEK(36879) AND 248
POKE 36879, PEEK(36879) OR C

3) Set the foreground colour to one of eight colours by POKEing
the colour code into the colour video RAM location corresponding

to the location of the displayed 'Multicolour' character. Since it is

bit 3 of the colour video RAM which determines whether a

character is displayed in 'High resolution' or 'Multicolour' mode, 8

should be added to the colour code values for all characters to be
displayed in 'Multicolour' mode.
4} Set the auxiliary colour code to one of 1 6 colours; this colour

code will have a value between and 1 5 and in the following ex-

ample is stored in variable C:

POKE 36878,PEEK(36878) AND 1 5

POKE 36878,PEEK(36878) OR (C*16)

Note: bit 3 of control register #16 has no function in

'Multicolour' mode but should be set to the normal value of 1

,

unless otherwise required when intermixing both colour display

modes.

5) Set up the character generator matrix for each character to be
displayed, thus:

bit

yte 7 6 5 4 3 2 10 Hex Location

110 11 1B 5120
1 1 10 1 1 1B 5121
2 1 10 1 1 1B 5122
3 110 11 1B 5123
4 00000000 00 5124
5 10 10 10 1 55 5125
6 10 10 10 10 AA 5126
7 11111111 FF 5127

This example is for a character in a user definable character

generator starting at location 5120. The character has a code
value of and shows each of the four colours available in

multicolour mode characters thus:

12

byte

1

2

3

4
5

6

7

7 6 5 4 3 2 10

8 S,g. 1.0,.,6&:

HMMMWg

Hex Location

1B 5120
1B 5121

1B 5122
1B 5123
00 5124
55 5125
AA 5126
FF 5127

13

RANDOM COLOURS

DESCRIPTION

Colours can be used to fill blocks of the screen thereby generating

interesting effects. This program shows how the colour

command can be used to generate colourful dynamically moving
patterns. The display consists of a dynamically moving point at

which are plotted squares of different colours, the movement of

the point and the colour selection are random. The resulting

display is a changing pattern of variously shaped different

coloured blocks.

RUNNING THE PROGRAM

Since no parameters are input by the program, simply type RUN
and watch the program display a constantly changing coloured

pattern.

PROGRAM STRUCTURE

set starting point on screen

set random variables for colour and number of charac-

ters of same colour

set random variable for movement direction

move in one of four directions

check character position is within screen boundary

plot coloured square

110
130

220
230-260
270-310
330-380

14

1 REM RANDOM COLOURS
2 REM ******###*#***#********
3 REM
18 REM THE ROUTINE GENERATES A BVNAMICALV
20 REM MOVING COLOUR DISPLRY.
23 SCNCLR
30 REM
40 REM SET COLOUR
45 REM
50 GRAPHIC 2- COLOR 1,1,1,0
54 P0KE36879, PEEK <36879 > +8
55 REM
100 REM SET CONSTANTS
119 A=10:B=10
128 REM
138 REM RANDOMISE COLOUR
158 REM
168 C=INTCRNIX1>*8>
165 IF C=l THEN 160
178 N=INT<RNDO>*10>
180 REM
190 REM MR IN CHARACTER PLOTTING ROUTINE
200 REM
210 FOR X=0 TO N
220 D=INT<RNDa>*4>
230 IF D=0 THEN R=R+1
240 IF D=l THEN A=R-1
250 IF D=2 THEN B=B+1
268 IF D=3 THEN B=B-1
265 REM
270 REM WITHIN BOUNDS?
275 REM
289 IF B>18 THEN B=18
290 IF B<1 THEN B=l
300 IF A>18 THEN A=13
310 IF AO THEN A=l
329 REM
330 REM PLOT COLOURED CHARACTER
340 REM
358 COLOR 1, 1,C,0
360 CHAR R,B," "

370 NEXT X
388 GOTO 168

READY.

15

MAP

DESCRIPTION

Background colours can very effectively be used to fill blocks of

the screen with different colours to define outline shapes. High
resolution or character plotting can then be used to put details on
the outline. This program shows how this can be done and to
illustrate the technique draws a map of North America with
appropriate text legends. The background colours are set by
POKEing the correct colour value into the colour memory In this

program only two outline colours are used and for this reason the
plotting is divided into two sections, one for each colour. The
display is built up from lines or single characters of colour. The
data for each line displayed is stored as data statements and
consists of sets of three values — line number, column number
and number of characters from that position to be plotted
continuously on the line. If the display was to be plotted in many
different colours then an extra colour parameter should be added
to the data tables.

RUNNING THE PROGRAM

Since no parameters are input by the program simply type RUN
and watch the program display a map of North America on the
screen using different colours for each country.

PROGRAM STRUCTURE

100-140 fill the screen with cyan colour to act as a
background to the display

200-280 plot the map of USA in green using data from table

lines 310-370
300-370 data table for drawing map of USA, note that the

data is stored as a sequence of three values: line,

column and length of block
500-570 plot the map of Mexico and Canada in white using

data from the table in lines 600-700
600-700 data table for plotting Mexico and Canada
900-1070 put legends on map — note: make sure that the

paper colour for the text or high resolution is identical

to that of the background colour already plotted

16

1 REM MRP
2 rem ***********************
3 REM
10 REM THIS PROGRAM BRRWS R COLOURED
15 REM MRP OF NORTH RMERICR.
20 REM
30 REM
100 REM SET MRP BACKGROUND COLOUR RS BLUE
110 REM
130 COLOR 6,6,0,0
140 PR I NT"3"

165 REM
200 REM DRAW THE U.S.A. IN GREEN
205 REM
210 RERB R,S,L
220 IF R=100 THEN GOTO 500
230 P=38408+R*22+S
235 X=7688+R*22+S
240 FOR 0=0 TO L-l
250 POKE P+0,5
255 POKE X+Q,160
260 NEXT C
270 REM
280 GOTO 210
290 REM
300 REM BflTR FOR PLOTTING U.S.R.
305 REM
310 DRTfl 6,1,4
320 BRTR 7,1,14,7,10,2,8,0,14,8,17,3
330 BRTR 9,0,15,9,16,4,10,0,19
340 BRTR 11,0,18,12,0,18,13,1,17,14,1,17
350 BRTR 15,2,15,16,6,11,17,7,8,17,15,2
360 BflTR 18,8,5,18,16,2,19,17,1
370 BRTR 100,100,100
495 REM
500 REM BRRW CfiHRBR AND MEXICO IN WHITE
505 REM
510 RERB R,S,L
520 IF R=100 THEN 900
530 P=33400+R*22+S
535 X=7680+R*22+S
540 FOR Q=0~ TO L-l
550 POKE P+Q .

1

555 POKE X+0,160
560 NEXT
570 GOTO 510
595 REM
600 REM BRTR FOR CANADA AND MEXICO
605 REM
610 BRTR 0,0,20,1,0,20
620 BRTR 2 , , 20 , 3 . 8 , 20 , 4 , ,28,5,1,19 , 6,5,15

17

623 DATA 7, 15,5, 8.. 16, 3, 9, 17, 1 , 16, 2, 4, 17, 2, 1

626 DATA 17,4,3,18,3,1,18,5,5,19,5,8,28,5,8
630 DATA 21,5,8
708 DATA 108, 100, 108
•395 REM
900 REM PUT NAMES OH MAP
905 REM
910 FDR 1=1 TO 3
920 READ R,S,Xt-
930 X=7680+22*R+8
950 FOR Q=0 TO LENCX*)-1
970 POKE X+Q.ASC^MIDfC^.Q+l, l>)+64
980 NEXT Q
990 HEXT I

1000 GET A*: IF A*="" THEN 1003
1010 pr i nt " mTtt^w«««Cf!M«I«a!ft««!n!I««

, '

1020 COLOR 1,3,6,0
1030 END
1050 DATA 3, 6, "CANADA"
1060 DATA 20, 6, "MEXICO"
1070 DATA 12, 8," USA"

READV.

18

RAINBOW

DESCRIPTION

This program demonstrates how colours can be used with the

high resolution plotting commands plus some of the limitations of

high resolution colour. The display is a rainbow of four different

coloured semicircles — red, yellow, green and blue. Each coloured

semicircle is composed of three high resolution half circle plots. As

the program stands the display produced has the four arcs each

with a different colour, but notice that the gap between each arc is

quite wide, try reducing the width of this gap and the colours of

each arc start to break up. The gap can be reduced by changing

the step value in line 210. The reason for this problem is simply

that the colours are defined on a character square basis, trying to

display two high resolution points of different colours in the same

character space is impossible, the result is that the colour of the

first plotted point will be changed to that of the second as soon as

the second is plotted.

RUNNING THE PROGRAM

This program requires no input parameters, therefore simply enter

RUN and watch the computer draw a coloured rainbow on the

screen.

PROGRAM STRUCTURE

90 draw border around screen using subroutine at

500
1 1 coordinates of semicircle centre

1 20 start and end angle of semicircle

200-330 loop to draw four coloured arcs

410 colour data stored as colour values for each arc

500-560 border drawing subroutine

19

20

1 REM RRIHBOW
2 rem Mww.mM.m#mwMmm*
3 REM
10 REM THIS PRGGRflM WILL DRAW R COLOURED RAINBOW
20 REM USING HIGH RESOLUTION
30 REM PLOTTING.
56 REM SET COLOURS
55 REM
60 GRAPHIC 2
70 COLOR 1,1,0,0
75 REM
80 REM DRAW BORDER
65 REM
90 GOSUB 500
95 REM
100 REM SET CONSTANTS
105 REM
110 XC=512:VC=900
120 P1=50=P2=100
130 REM
140 REM LOOP TO DRAW FOUR COLOURED RAINBOW
150 REM
160 FOR R=100 TO 650 STEP 150
170 READ C
180 REGION C
190 REM
200 REM THREE LINES TO EACH COLOUR
205 REM
210 FOR 0=20 TO 60 STEP 20
220 P=R+Q
230 CIRCLE 2,XC,YC,0.7*P,P,P1,P2
240 NEXT Q
250 NEXT R
300 REM END
310 GET R$=IF A*="" THEN 310
320 COLOR 1,3,6,0
330 GRAPHIC
340 END
395 REM
400 REM COLOUR DATA FOR RAINBOW
405 REM
410 DATA 2,7,5,6,
495 REM
500 REM DRAW BORDER
505 REM
510 POINT 2,0,0
520 DRAW 3 TO 0, 1023
530 DRAW 3 TO 1023,1023
540 DRAW 3 TO 1023,0
550 DRAW 3 TO 0,0
560 RETURN

21

FAN

DESCRIPTION

This is the last program in the section on colour and it simply

produces a pretty changing and colourful pattern using high

resolution colour plotting. The pattern is built up from different

coloured high resolution lines and can be varied by changing the

initial variable values in line 1 10 or by inserting extra loops into

the main display loop — lines 140 to 220. The colour of each
plotted line is set by a random value between 1 and 7 in lines

350-370. The lines are drawn by the subroutine 400 to 510.

RUNNING THE PROGRAM

Since no parameters are input by the program, simply type RUN
and watch the pattern develop on the screen in constantly

changing colours.

PROGRAM STRUCTURE

50 set background colour

1 10 initialisation variables — change for new pattern

1 40-220 main display loop — each of the four sub loops in this

section draws a different part of the pattern, adds
more sections or change values to change patterns

300-350 set values for line draw subroutine

360-370 set new line drawing colour

400-510 line drawing subroutine

600-660 border drawing subroutine

22

23

1 REM FAN
2 REM #**#*****##******#*****
3 REM
10 REM THIS PROGRAM DRAWS A

20 REM COLOURED ROTATING FAN
30 REM
46 REM SET BACKGROUND COLOUR
50 GRAPHIC 2
60 COLOR 1.1*0.0
75 REM
60 REM DRAW BORDER
85 REM
90 GOSUB 680
95 REM
100 REM SET UP VARIABLES
105 REM
110 X=0 : V=0 : Q=25 :

2=0
120 REGION 2
130 REM
135 REM MAIN LOOP
137 REM
140 FOR X=20 TO 1000 STEP 24
150 GOSUB 300: NEXT X
160 FOR V=20 TO 1000 STEP 24
170 GOSUB 300: NEXT V
180 FOR X=1000 TO 20 STEP -24
190 GOSUB 300: NEXT X
200 FOR Y=1000 TO 20 STEP -24
210 GOSUB 300= NEXT V
220 GOTO 140
290 REM
300 REM DRAW LINE AND SET INK COLOUR
305 REM
310 XB=1000-X:VB=1000-V
320 XE=X=VE=V
339 GOSUB 400
340 ZoZ+l'IF 2>=Q THEN Z=0
350 Q=INT<RNDO>*50>
360 C=IHT<RNDa>*7> + l

365 IF Ol THEN 360
370 REGION C
380 RETURN
390 REM
400 REM DRAW LINE
410 fi=XE-XE
420 B=VE-V3
438 Q=SQR<A*A+B*B)
440 UX=fl/Q
450 UV=B/Q
469 FOR L=6 TO Q STEP 24
478 X1=XB+L*UX

24

480 Y1=VB+L*UV
490 IF XK0 OR VK0 THEN 510
500 POINT 2, XI, VI
510 NEXT L
520 RETURN
595 REM
600 REM DRAW BORDER
605 REM
610 POINT 2/0,0
626 DRAW 2 TO 0, 1023
630 DRAW 2 TO 1023.1023
640 DRAW 2 TO 1023,0
650 DRAW 2 TO 0,0
660 RETURN

REABV.

25

COLOURS

DESCRIPTION

Although the VIC has the ability to display a wide range of colours,

and has some good high resolution graphics routines built into

ROM, using both of these can at best be a little awkward. The use

of the VIC cartridge the 'Super Expander' makes life considerably

easier by giving you such commands as CIRCLE, PAINT, and so

on. In this program we are going to use those two commands in

particular to draw a circle, colour it in, and at the same time have

you specify the colour of the 'paint' that we are going to use to fill

the circle.

RUNNING THE PROGRAM

In this program only one input is required, and that is the colour of

the paint to be used. Our input routine, commencing at line 1 00,

but consisting mainly of the subroutine from lines 400 to 460, will

only allow an input of a number from to 9, or the '—
' key.

Inputting a negative number allows you to exit from the program,

otherwise you just go back for another go. The central X and Y co-

ordinates XC and YC (using the graphic 2 mode and a scaled

resolution of 1024 by 1024) are set in lines 120 and 130
respectively, and the radius R is set in line 140. Our border

drawing subroutine in lines 300 to 360 is used to DRAW a neat

border around the screen, before drawing the circle and filling it in

with the routine in lines 1 85 to 230. Line 240 then sends us back

to request another colour.

PROGRAM STRUCTURE
60-70 set colours

90 draw border round screen using subroutine at

300
1 00 input colour using subroutine at 400
105 check for end of program

1 20 set X co-ordinate of centre of circle

1 30 set Y co-ordinate of centre of circle

1 40 set radius of circle

1 50 draw border round screen using subroutine at

300
185-240 draw circle and paint it in

250-280 end routine

300-360 border drawing subroutine

400-460 data input and checking routine

26

1 REM COLOURS
2 REM ***********************
3 REM
10 REM PROGRAM TO DRAW A CIRCLE
20 REM AND COLOUR IT IN USING THE
30 REM 'PAINT' COMMAND. COLOUR OF
48 REM PAINT IS INPUT.
45 REM
50 REM SET COLOURS
55 REM
60 GRAPHIC 2
70 COLOR 3,3,0,0
75 REM
80 REM DRAW BORDER
85 REM
90 GOSUE 300
95 REM
100 REM INPUT COLOUR OF PAINT
101 Z*="":T=5
102 CHAR 19,2,"?
103 GOSUB 400
104 C=Z
105 IF C<0 THEN 250
106 IF C>7 THEN 100
107 FOR 1=1 TO 500= NEXT I

110 REM SET OTHER PARAMETERS
115 REM
120 XC=512
130 VC=475
140 R=350
150 REM DRAW BORDER
155 REM
160 SCNCLR
170 GOSUB 300
1S0 REM
165 REM DRAW CIRCLE
190 REM
200 REGION C
205 REM
210 CIRCLE 2,XC,VC,0.7*R,R
220 PAINT 2,XC,VC
230 REGION
240 GOTO 180
250 REM END
260 COLOR 1,3,6,0
270 GRAPHIC
280 END
295 REM
300 REM DRAW BORDER
305 REM
310 POINT 2,0,0

27

320 DRAW 2 TO 0,950
330 DRAW 2 TO 1023,959
340 DRAW 2 TO 1023,0
356 DRAW 2 TO 0,0
360 RETURN
395 REM
400 REM INPUT DATA
403 REM
410 GET A*= IF A*="" THEN 410
420 IF <RSC<fi*K48 OR RSC<A#»57> AND R*0"-" THEN 45©
430 CHAR 19,T,A$:T=T+1
440 Z$=Z*+R$: GOTO 410
450 Z=VALXZ*>
460 RETURN

READV.

28

o
Z>

O
c/)
UJ
DC

29

HIGH RESOLUTION DISPLAYS
Besides normal text the VIC can display drawings and shapes.

Such graphics displays can be achieved using either the simple

character graphics or the high resolution point plotting facility.

Character graphics can be built up using strings of graphic

characters displayed at the correct position on the screen. Such

displays are, however, simple and crude; wherever possible, high

resolution point plotting is preferable.

The easiest way to give the VIC high resolution point plotting

capability is to use the Super Expander cartridge. This cartridge

adds a range of useful high resolution point plotting commands to

the VIC. If you do not possess this cartridge, a short program writ-

ten in Basic, such as the example at the end of this section, can be

used to plot high resolution points, lines etc.

THE THEORY OF HIGH RESOLUTION PLOTTING
The VIC has two display modes, normal text mode and user

definable character mode. The modes are determined by the posi-

tion in memory of the character generator. There are also two
modes of colour operation, high resolution and multicolour. The

VIC is thus capable of several permutations of colour and display

mode.
The two display modes depend on whether the normal internal

ROM-based character generator is used or a user definable RAM
character generator. The position of the character generator

within processor memory space is determined by the contents of

bits 0-3 of control register # 5. These four bits form bits A1 to

A1 3 of the actual character generator address as follows:

The normal contents of bits 0-3 of control register # 5 are zero;

the way the VIC is configured, this gives a character generator ad-

dress of Hex $ 8000 (decimal 32768) . Starting at this location is a

4K ROM, the character generator; this contains the usual dot pat-

tern for each of the 256 different characters which can be

displayed. The 4K character generator ROM contains two
separate character generators each occupying 2K of ROM.
The first of these two character generators which starts at ad-

dress Hex $8000 (decimal 32768) contains the dot pattern for

the 1 28 normal upper case and graphics characters plus the 1 28
reverse field versions of the same characters. The second

character generator starts at location $8800 (decimal 34816)
and is identical to the first except that part of the graphics

character set is replaced by lower case characters. When the se-

cond character set is enabled the VIC will normally display in lower

case characters rather than the normal upper case; upper case will

30

be displayed with the shift key depressed.
The second character generator can be enabled normally by

pressing the shift key and the Commodore logo key simultaneous-
ly. Alternatively, one can change the contents of control register

#5, thus:

POKE 36869,242: set lower case display mode
POKE 36869,240: set upper case display mode

This simply shifts the starting address of the character
generator up 2K in memory, thereby accessing the second
character generator.

The character generator starting address in control register # 5
can be changed so that the character generator is located in RAM,
thereby allowing user definable characters to be created. The star-
ting address of the user definable RAM character generator on the
VIC can be any 2K (4K if 8 x 1 6 characters are used) block of RAM
located between address Hex $1000 and $3000. It should be
located at the highest possible address and protected from being
overwritten by Basic by lowering the top of memory pointers to
protect the RAM space used by the character generator. The set-
ting up of control register # 5 has the following rules:

1

)

The starting address is always located at the beginning of a 1

K

block.

2) If the contents of bits 2 and 3 are both zero then the starting ad-
dress defaults to the ROM at $ 8000 plus the offset stored in bits
and 1 ; this offset is in increments of 1 K.
3) Bits 2 and 3 contain the starting address in increments of 4K.

Thus, to put the user definable character generator to start at
1 1 K up in memory or Hex $2000 or 2 x 4K block plus 3 x 1

K

block, then bits to 3 would be set up as follows:

Bits 3 2 10
Binary contents 10 11
Representing 2 x4K blocks 3x1K blocks

The user definable character generator is very important since it

not only allows special graphics characters to be created but it

also allows high resolution point plotting on the VIC. This allows a
graph or display to be created with a resolution of 1 76 points in

the horizontal by 1 84 points vertically, sufficient to give a very
good quality display. High resolution point plotting is achieved by
programming techniques using the user definable character

31

generator. The use of the RAM character generator must be

understood before these techniques can be explained.

The first stage in creating a user definable character set is to

allocate a block of RAM memory for storage of the character

generator. If characters on an 8 x 8 matrix are being displayed

then 2048 memory locations are required; if an 8 x 1 6 matrix is to

be used, then 4096 locations are required. Since a standard VIC
only has 3584 RAM memory locations available to the user, an
8x8 matrix user definable character generator using 2048 of

these locations is the only one feasible. The user RAM on a stan-

dard unexpanded VIC starts at memory address 4096 and goes
on to address 7679.
The character generator can be programmed to start at any of

the following addresses within that range: 4096, 5 1 20, 6 1 44 or

7168. Since 2048 locations are required for the character

generator, the only possible starting location is 51 20; this leaves

1024 bytes free for user programs (not much; purchase of the

standard 3K RAM expansion module is strongly recommended; its

use will not change the start address recommended above). This

area of RAM chosen for use by the character generator must be

protected from being overwritten by a Basic program or data; if

this happened the display would be destroyed. The user definable

character generator can be protected from being overwritten by

lowering the top of memory pointers, thus:

10 POKE 51,255: POKE 52,19
1

1

POKE 55,255: POKE 56,1 9
12CLR

The next stage is to put the data about each character into the

new character generator. This is done by using POKE commands
or machine code load statements to put information into the 2048
memory locations. Before this can be done each of the new
characters must be designed; this entails drawing each character

on an 8 x 8 grid (see Fig 1) . Once the character has been designed

it can be converted into the block of eight numerical values for

storage in the character generator. Each line in the 8x8 grid cor-

responds to a byte of data and each of the eight bits in that byte

corresponds to a dot or column position on that line.

Information is stored in memory in binary; thus by considering

each bright dot to be a logical '1
' and each space a logical '0', a

line of dots in each character can be converted into a numerical

value. The way this is done is shown in Fig 2. Some examples of

character designs and their conversion to numerical values are

shown in Fig 3. From these values a table can be created, one col-

32

umn having the character generator address and the correspon-
ding entry in the second column having the value to be put into
that location.

The table is divided into blocks of eight entries, each block con-
taining the data for one character. Each of these blocks of eight
entries is numbered starting at and going up to 255. These
numbers correspond to the ASCII or character code number
stored in the video RAM when the characters are displayed. An
example table using the character designs in Fig 3 is shown in Fig
4. The table need only contain the number of characters actually
required; all 255 possible character blocks do not have to be filled

in
.
It is advisable though that the table starts at the first location in

the character generator; any gaps left should be filled with zeros.
If the character generator is being loaded from a Basic program,
the values in the table are best stored as DATA statements; these
values are then entered into memory using POKE commands,
thus:

20 FOR 1 = TO 2048
21 READ A
22 IF A = "*" THEN 30
23 POKE 5120 + 1, A
24 NEXT
30 END

1 00 DATA 24,20,20, 1 8,48, 1 1 2,96,0
1 10 DATA 0,24,60,1 26,255,24,36,66
1 20 DATA 255,1 26,60,24,24,60,1 26,255
1 30 DATA *

In the majority of applications alphanumeric characters are re-
quired in addition to user defined graphics characters; in such
cases part of the data in the ROM based character generator must
be transferred to the new RAM character generator. All the
alphanumeric characters plus the VIC graphics characters (or
lower case depending on which of the two character generators is

accessed) are contained in the first 128 characters of the
character generator. The remaining 128 characters are the
reverse field versions of the first 1 28 characters. The first 1 28
characters of the ROM character generator are transferred to the
new RAM character generator using a combination of PEEK and
POKE commands thus:

20 FOR I = TO 1024
30 POKE 5120 + 1, PEEK(32768 + I)

40 NEXT I

33

This leaves 1 28 possible user definable characters starting at

address 6155. These characters can be filled as described above,

and will have an ASCII code starting value of 1 28. An example of

the routine to enter the character generator data will be as follows:

20 FOR I = TO 1024
21 POKE 5120 + 1, PEEKI32768 + I)

22 NEXT I

30 FOR 1 = TO 1024
31 READ A
32 IF A = "*" THEN 200
33 POKE 6144 + 1, A
34 NEXT

60 REM DATA FOR ASCII CODE CHARACTERS 128, 129,

AND 130

1 00 DATA 24,20,20,1 8,48,1 1 2,96,0

1 1 DATA 0,24,60,1 26,255,24,36,66
1 20 DATA 255,1 26,60,24,24,60,1 26,255
1 30 DATA *

Having loaded the user definable character generator it can be

used. It will remain in the VIC until the machine is switched off and

can thus be used by more than one program. To use the RAM
character generator two of the 6561 registers must be changed,

thus:

200 POKE 36869, 253
210 POKE 36866, PEEK(36866) OR 1 28

Once the user definable RAM character generator has been set

up and the 6561 registers changed to utilise the new character

generator, it can be used to generate special displays. If POKE
commands are used to place the characters in the video RAM
memory then the ASCII code value of the new characters is used.

If the new characters are incorporated into strings then it is essen-

tial to know which character in the normal character set the new
character replaces. This can be determined by using the table of

VIC ASCII codes and looking for the character with the same code

value as the new character. When the program is written the nor-

mal characters are inserted into the string; when the program is

run they will be automatically replaced by the new characters. It is

important to note that when using POKE commands the colour

34

RAM location corresponding to the location where the character is

to be displayed must also be set to give the required colour, other-
wise the display will be white on white and therefore invisible. To
restore the normal function of the VIC ROM character generator,
use the following two lines:

500 POKE 36869,240
510 POKE 36866,150

7 6 5 4 3 2 1

• • • e • • • •
1 « • e « • •
2 6 • © •
3 • c
4 « e
5 © © © ©
6 © © © © © •
7 © c © © e © © ©

7 6 5 4 3 2 10
• •

1 • •
2 • •
3 © e © © © •
4 • ©
5 « ©
6 © ©
7

Examples of layout in design of characters.

35

36

o • c © m # # e
i i i i i i i »

2 7 2s 2» 2« 2 3 2 2 2' 2°

II II II H II II II II

128+64+32+16+8 + 4 + 2+1 =255

« • • c © •
11111111
0+64+32+16+8 + 4 + 2+ 0=126

© • © ft

+ 0+32+16+8 + 4 + + 0=60

• «
J » 1 t 1 1 1 1

+ + 0+16+8 + + + 0=24

• •

+ + 0+16+8 + +0+0 -=24

• • • •
11111111
+ 0+32+16+8 + 4 + + 0=60

• • e • # e
iiiiiiii
0+64+32+16+8 + 4+ 2 + 0=126

• • « e m m • •
11111111

128+64+32+16+8 + 4 + 2 + 0=255

Conversion of a character into numerical values.

7 6 5 4 3 2 1

1 © «
2 6 f» 6 •
3 «* 6 • 6 •
4 ft

1 « e 6 © • •
5 • «
6 • •
7 • •

7 6 5 4 3 2 1

• •
1 • •
2 • •
3 © •
4 •
5 G • •
6 e •
7

-0 +0+0+0+0 +0+0+0-0
-0+0 +0+16+8+0 + + 0-24

-0 + +32+16+8 + 4 + + -60

-0+64+32+16+8 + 4+ 2 + 0-126

-128+64+32+16+8 + 4+ 2 + 1-255

-0 + + 0+16+8+ + + 0-24

-0 + 0+32+0 + + 4 + + 0-36

-0+64+0+ + + + 2+0-66

-0 + + + 16+8 + + + 0-24

-0 + + +16+0 +4+0 + 0-2?
-0+ + 0+16+0+ 4 + + 0-20

-0 + + + 16+0 + + 2 + 0-18

-0 + 0+32+16+0 + + + 0-48

-0+64+32+16+0 + + + 0-112

-0+64+32+0+ + + + 0-96

-0+0+0+0+0+0+0+0-0

5120-
5121 - 24
5122- 60
5123- 126

5124 - 255
5125- 24
5126- 36
5127- 66

5128 - 24
5129- 20
5130- 20

5131 - 18

5132 - 48
etc.

Character#1

Character#2

37

re

(A

LJ

1

o

1

<
re

>

0!

"O
re
u.

o
3

re

(D
3

-

\

\
f

1 4-
1

1 I 1 1 1 1MU£»
|1

^
1 1
1- ^

^

^M«i
l l l l l l

o
zr
0)

O
<D

re

nnnss

38

High resolution point plotting uses exactly the same principles
as the generation of user definable characters, it entails filling the
video RAM with each of the 255 character codes (only half the
screen can be used with 8x8 characters). The RAM character
generator can then be used as a high resolution memory mapped
display. If all bytes in the RAM character generator are set to zero
then the screen is blank; set one bit in one of the characters and a
single high resolution dot will appear on the screen.
The relationship between a single dot on the screen, the loca-

tions in the RAM character generator and the code value in each of
the video memory locations is shown in Figure 6. This shows that
the basis of high resolution plotting is simply filling the video RAM
corresponding to the screen area of the high resolution display
with successive and incremented code values. The rest is a matter
of calculation to ensure that the correct bits are set in each of the
eight bytes corresponding to each of the character codes used in

the video RAM.
A high resolution plotting program consists of two parts, the in-

itialisation and the point plot subroutine. The initialisation sets up
the registers of the 6561 for the user definable character
generator, lowers the top of memory to protect that character
generator, puts the correct data into the video and colour RAMs
and clears the contents of the RAM character generator. The point
plot subroutine is called whenever a point is to be plotted or erased
and consists of a routine which calculates, from given X and Y
coordinates, which bit in which byte of the RAM character
generator is to be set or erased.

It should be noted that the area of the screen devoted to high
resolution plotting can vary from just a few adjacent character
spaces to the whole screen (to do this the 6561 is initialised to
display 8x16 characters rather than the normal 8x8; this re-

quires the RAM character generator to be enlarged to 4K). An ex-
ample of a set of Basic routines to plot points in high resolution,
plus lines and circles, is contained in the following program (these
routines use a 2K character generator and 8x8 characters so the
display only occupies half the screen; the 6561 registers have
been used to centre the display). Note also the routine which
transfers characters from the ROM character generator to the user
definable RAM character generator.

39

i rem **
2 REM *PRGGRAM TO PLOT THE GRAPH OF A FUNCTION
3 REM *IN HIGH RESOLUTION ON THE VIC
4 REM **
5 REM
6 REM * INITIALISE 6561 REGISTERS
? PRINT"*)"
S P0KE36867, 12S
9 P0KE36865.60
16 FC8>=6 = F<0) = 128 : F< 1 >=64 :F<2>=32 = F<3> = 16
20 F(4>=8:F<5)=4:FC6>=2:FC7)=1
30 FORQ=0TO255
32 POKE7680+Q..Q
34 POKE38400+G,2
36 NEXTQ
40 F0RG=51 20T051 20+255*3
42 POKEQ,0
44 NEXTQ
45 P0KE36869,253
46 F0KE36866, PEEK<36866>0R123
47 POKE36867,150
60 REM
61 REM *PLOT GRAPH OF FUNCTION IN LINE 90
62 REM
30 F0RC=0T0175
30 L=45+40*SIN<C/10>
91 REM
92 REM *HIGH RESOLUTION POINT PLOT ROUTINE
93 REM
100 A=5120
110 LR=L,-'8

120 LA=IHT(LR)
130 A=A+<LA*176>
140 LR=<LR-LA>*3
300 CR=C/8
310 CA=INT<CR>
320 A=A+<CA*8>
325 A=A+LR
33© CR= I NT < < CR-CA > *8

>

400 POKEA , PEEK < A > ORF < CR

>

5O0 NEXTC
550 REM
551 REM *WAIT FOR KEV PRESS THEN RETURN
552 REM *SCREEN TO NORMAL.
553 REM
600 GETA*:IFh*=""THEN60G
1 GOO P0KE36S69, 240
1010 P0KE36866, 158
1020 P0KE36S67,174
1030 P0KE36865.38

40

1 REM *««<f:^:*:$^«««»««*^«$**^«$$^^««Ne$«^^^>t=°*
2 REM ^PROGRAM TO PLOT HIGH RESOLUTION
3 REM *POINTS, LINES AND CIRCLES ON THE VIC.
4 rem wmmmwmmM**mmmmm**mmmm
5 rem
6 REM *INITIfiLISE 6561 AND CHAR GEN
7 REM
8 PGKE36367, 128
9 POKE36865,60
10 F<8>=0-F(0)=128:F<1>=64:F<2)=32
20 F<3>=16:F<4>=8:F<5>=4:F<d)=2-F<7>=1
35 FORQ=0TO255
37 POKE7680+G,G
38 POKE384O0+Q,2
39 NEXTQ
46 FORQ=5120TO5 120+255*8
41 POKEQ,0
42 NEXTQ
45 P0KE36S69,253
4 6 P0KE36866 , PEEK C36866 >OR 1 28
47 POKE36867,150
90 REM
91 REM *DATA FOR LINE DRAWING
92 REM *STflRT fiT COORDINATES XI, VI
93 REM *END AT COORDINATES X2,V2
94 REM
100 READX1,V1,X2,V2
105 IFX1=255THEN2O0
110 GOSUB1000
120 GOTO 100
150 DATA 80,10,100,40
151 DATA SO, 10,60,40
152 DATA 95,38,95,80
153 DATA 65,38,65,80
154 DATA 65,80,35, 80
155 DATA 85,80,85,60
156 DATA 90,80,90,60
157 DATA 85,60,90,60
158 DATA 70,75,70,60
159 DATA 75,75,75,60
160 DATA 70,75,75,75
161 DATA 70,60,75,60
162 DATA 70,50,70,35
163 DATA 75,50,75,35
164 DATA 70,50,75,50
165 DATA 70,35,75,35
166 DATA 85,50,85,35
16? DATA 90,56,90,35
168 DATA 85,50,90,50
169 DATA 85,35,90,35
170 DATA 20,80,20,50

41

171 DATA £2,80/22,56
172 DATA 120,88,120,50
173 DATA 122,80,122,50
188 REM *END OF LINE DATA
189 DATA 255,255,255,255
190 REM
191 REM *DATA FOR DRAWING CIRCLES
192 REM *CENTRE AT COORDINATES CX,CY

193 REM *RADIUS R
194 REM
199 DATA 255,255,255,255
200 CX=2 1

= CV=40 :
R= 1

O

210 GOSLIB3600
220 CX=1 2 1

= CV=35 = R= 1

5

230 GOSUE3000
240 CETfl*:IFfi*=""THEN240
1000 REM
1610 REM *LIHE DRAWING ROUTINE
1026 REM *USES DATA FROM LINE DATA TABLE

1030 REM
1200 XB=X2-X1
1216 VD=V2-V1
1230 AO=l:Al=l
1240 IFVD<6THENA0=-1
1258 IFXD<:0THENA1=-1
1270 XE=ABS<XD) :VE=ABS<VD> :D1=KE-YE
1280 IFD1>=0THEN1320
1 290 S0=- 1

: S 1 =0 = LG=VE : SH=XE
1380 IFVD>=OTHENS0=1
1310 GOTO 1340
1 320 80=0 • S 1 =-

1

: LG=XE = SH=VE
1330 IFXD>=0THENS1=1
1340 REM
1 350 TT=LG •• TS=SH : UD=LG-SH : CR-LG-SH/2
1355 D=0
1360 REM
1370 C=X1-L=V1:GO3UB2100
1380 IFCT>=0THEN1420
1 390 CT=CT+TS : X 1 =X 1 +S 1 • V 1 =V 1 +SS
1410 G0T01460
1420 CT=CT-UD:X1=X1+R1 : V1=V1+A0
1460 TT=TT-1
,1470 IFTT<0THENRETURN
1480 GOTO 1370
2060 REM
2010 REM *POIHT PLOT ROUTINE
2020 REM *USED BV LINE AND CIRCLE DRAW
2030 REM ^ROUTINES
2040 REM *C=X COORDINATE
2050 REM *L=V COORDINATE
2060 REM

42

£180 R=512G
2110 LR-L/8
2120 Lft=INT<LR>
2130 A=A+<LA*176>
214© LR=<LR-LA>*8
2366 CR=C/8
2310 CA=INT<CR>
2320 A=R+<CA*8>
2325 A=A+LR
2330 CR=INT<<CR-CA>*8>
2400 POKEfl , PEEK < A >ORF < CR

)

2500 RETURN
2600 GETA* : IFA*= " " THEN2660
3000 REM
3001 REM *CIRCLE DRAWING ROUTINE
3002 REM *OX AND GV ARE OFFSET VARIABLES
3003 REM *WHICH DETERMINE WHETHER A CIRCLE
3004 REM *GR EL IPSE IS DRAWN
3005 REM
3010 0X=l:0V=1.2
3020 A=2*n
3030 N=100
3040 IHC=CA-0)/N
3050 FORI=0TOASTEPINC
3069 X=R*S I N < I) : X= I NT <X#OX+CX+ . 439)

3070 V=R*COS < I)
: V= I NT <V*OV+CV+ . 499 >

3080 L=V •• C=X : G0SUB2 1 OS
3090 NEXT

I

3100 RETURN

43

LINE

DESCRIPTION

Although the VIC Super Expander command DRAW will draw a

high resolution line between two points on the screen it has

several serious drawbacks. Foremost of these drawbacks is that

it uses relative coordinates, which are not very easy to use in

many graphics applications. Another drawback is that it is

impossible to draw a line with variable spacing between the dots.

Both these problems are overcome by using this program,

although it has one shortcoming in that since it is written in Basic

it is rather slow. Most of the programs in this book which require

line drawing use this routine. The variable R$ is input to deter-

mine if the line is to be drawn or erased (the line is erased if R$ =
E).

RUNNING THE PROGRAM

In the program 'LINE' there are six variables which are input by
program lines 1 00 to 1 30. The first two are input by line 1 00 and
are the X, Y coordinates of the beginning of the line. The second
two variables are the X and Y coordinates of the end of the line,

and the last variable is the spacing between the dots used to

draw the line. The input in line 1 20 determines whether the line is

drawn or erased. If an 'E' is input then the line will be erased, if

any other letter then the line will be drawn.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 500
1 00-1 50 input variables for start and end of line coordinates and

dot spacing

1 60-320 line drawing routine

500-560 border drawing subroutine
600-660 Data input routine

44

45

1 REM LINE
2 REM ***********************
3 REM
10 REM THIS PROGRAM DRAWS OR ERASES R LINE
20 REM BETWEEN TWO SETS OF COORDINATES
30 REM THE SPACING BETWEEN THE DOTS USED
40 REM IS VARIABLE.
45 REM
50 REM SET COLOURS
55 REM
60 GRAPHIC 2
70 COLOR 3,3,0.3
75 REM
S0 REM DRAW BORDER
85 REM
90 GOSUB 500
95 REM
100 REM LINE DRAWING ROUTINE PARAMETER INPUT
110 REM COORDINATES OF BEGINNING OF LINE
111 2*="":T=>5
112 CHAR 19,2,"?"
113 GOSUB 600
114 XB=2:Z*=""
115 CHAR 19,T,",":T=T+1
116 GOSUB 600
117 VB=Z=FOR 1=1 TO 500: NEXT I

113 IF XB<0 OR VB<0 THEN 700
119 CHAR 19,2,"
120 REM COORDINATES OF END OF LINE
121 Z*="":T=5
122 CHAR 19,2,"?"
123 GOSUB 600
124 XE=Z:Z*=""
125 CHAR 19,T,","iT-T+l
126 GOSUB 600
127 VE=Z
123 FOR I=>1 TO 500: NEXT I

129 CHAR 19,2,"
130 REM DOT SPACING
131 Z*="":T=5
132 CHAR 19,2,"?"
133 GOSUB 600
134 DS=G*Z
135 FOR 1 = 1 TO 500 • NEXT I

136 CHAR 19,2,"
140 REM DRAW OR ERASE
141 CHAR 19,2,"?"
142 GET R*:IF R$="" THEN 142
143 IF RSC<R*X65 OR ASC<R$>>90 THEN 142
144 CHAR 19, 5, R*
145 FOR 1=1 TO 500: NEXT I

46

146 CHAR 19,2,"
150 REM
160 REM DRAW LINE
170 REM
180 P=XE-XB
190 Q=VE-VB
200 R=SQR<P*P+Q*Q5
210 LX-P/R
220 LY=Q/R
230 FOR 1=0 TO R STEP DS
240 X=XB+I*LX
250 V=VB+I*LY
260 IF" X> 1023 OR V>950 THEN 310
270 B=3
230 IF R$="E" THEN B=4
290 POINT B,X,V
310 NEXT I

320 GOTO 100
495 REM
500 REM BORDER DRRWING ROUTINE
505 REM
510 POINT 3,0,0
520 DRRW 3 TO 0,950
530 DRAW 3 TO 1023,950
540 DRAW 3 TO 1023,0
550 DRAW 3 TO 0,0
560 RETURN
595 REM
600 REM INPUT DRTR
605 REM
610 GET R*=IF R*="" THEN 610
620 IF <ASC<R*><48 OR ASC<A*>>57> AND fl*<>"-" THEN 650
630 CHAR 19,T>A* : T=T+1
640 Z$=Z*+fl*:GOTO 610
650 Z=VAL<:Z*>
££0 RETURN
695 REM
700 REM END PROGRRM
705 REM
710 COLOR 1,3,6,0
720 GRAPHIC
730 END

READY.

47

RECTANGLE 1

DESCRIPTION

This program shows how to draw rectangles with sides which are

not parallel to the screen axis. This is simply done by using a

matrix of coordinates. Matrices are very important in graphics

and an understanding of the principles is essential. The

coordinate matrix is usually stored as data statements within the

program and subsequently placed in an array. The values in this

array can be manipulated mathematically, thereby allowing the

shape to be rotated, scaled or moved about the screen area. All

these will be dealt with in later sections of this book. In this

program the values are simply used to display the shape at the

specified coordinates.

RUNNING THE PROGRAM

Since all the coordinate values are stored in data statements —
lines 210 and 220 — there are no values to be input in the

program. However, to change the size or position of the rectangle

it is necessary to input new data values into these data state-

ments. Five coordinate values are required to draw the four lines

of the rectangle; the X component of these five coordinates is

stored in line 210 and the corresponding Y component in line

220. The best way to obtain these coordinate values for a new
rectangle is to draw the shape with the correct scale and

orientation onto graph paper and measure the required values.

PROGRAM STRUCTURE

50-60 set colours

80 draw border around screen using subroutine at 600
1 10-180 load matrix data into arrays

210 data for X component of coordinates

220 data for Y component of coordinates

300-350 set variables for draw
360 draw rectangle

600-660 border drawing subroutine

48

49

1 REM RECTANGLE
2 REM ##*####*#**#***#*******
""< REM
10 REM PROGRAM TO DRAW A RECTANGLE
20 REM USING MATRIX METHODS.
30 REM
40 REM SET COLOURS
50 GRAPHIC 2
60 COLOR 3,3.0.10
70 REM DRAW BORDER AROUND SCREEN
80 GOSUB 600
100 REM INPUT DATA FROM DATA STATEMENTS
110 REM INTO ARRRV.
120 DIM M<5,25
130 FOR C«l TO 5
140 READ MCC1)
150 NEXT C
160 FOR C=l TO 5
170 READ M<C,2>
1S0 NEXT C
200 REM DATA FOR COORDINATES
205 REM
210 DATA 160,320,560,400,160
220 DATA 800.400,560,960,800
300 REM DRAW RECTANGLE
310 FOR C«=i TO 4
320 XB=M<C,1>
330 VB=M<C/2)
340 XE=*KC+1,1>
350 VE=WC+1,2>
360 DRAW 3,.7#XB,VB TO .7*XE,VE
365 NEXT C
370 GETfl* : IFA$=" "THEN370
380 COLOR 1, 3, 6, 0: GRAPH I C0 : END
600 REM BORDER DRAWING ROUTINE
610 POINT 3,0,0
620 DRAW 3 TO 1023,0
630 DRAW 3 TO 1023, 1023
640 DRAW 3 TO 0, 1023
650 DRAW 3 TO 0,0
660 RETURN

READV.

50

POLYGON

DESCRIPTION

The only difference between this program and the previous
program 'RECTANGLE' is the data used to draw the shape. The
reason is that the use of a coordinate matrix is not confined to
rectangles, it can be used to generate any required shape. In this

program the data will draw an irregularly shaped octagon. To
change the shape and its position simply change the data.

RUNNING THE PROGRAM

The coordinate data values are stored as data statements — lines
2 1 and 220 — so now there are no values to be input when the
program is run. The size, shape or position of the shape on the
screen can be changed by changing the data values in the data
statements. It should be noted that when a shape is drawn the
number of pairs of coordinate values is one more than the number
of lines in the shape. The number of coordinate values used to
draw the shape is stored as the first data statement value — line

205. The coordinates are stored as two sets of data, first all the
X values and then in corresponding order all the Y values. In the
example the X coordinates are thus stored in the data statement
on line 210 and the Y values in line 220.

PROGRAM STRUCTURE

50-60 set colours

80 draw border around screen using subroutine at 600
1 10-180 load matrix data into arrays
205 number of coordinates in matrix data
210 data for X component of coordinates
220 data for Y component of coordinates
300-350 set variables for draw
360 draw polygon
600-660 border drawing subroutine

51

52

1 REM POLVGON
2 REM ***************
3 REM
10 REM PROORRM TO DRAW R POLVGON
15 REM WITH N SIDES USING MATRIX
20 REM METHODS.
40 REM SET COLOURS.
50 GRRPHIC2
60 COLORS, 3, 0,10
70 REM DRAW BORDER
80 GOSUB 600
100 REM INPUT DRTR FROM DRTfi STATEMENTS
110 REM INTO RRRRV.
115 RERD N:REM NUMBER OF SIDES.
120 DIM M<N,2>
130 FOR C-l TO N
140 READ M<C,1>
150 NEXT C
160 FOR C=l TO N
170 RERD M<C,2>
180 NEXT C
200 REM DRTR FOR COORDINATE
205 DRTR 9
210 DRTR 100,200,512,824,924,824,512,200,100
220 DRTR 500,400,300,400,500,600,700,600,500
300 REM DRRW POLVGON
310 FOR C-l TO N-l
320 XB=M<C,1>
330 VB=M<C,2>
340 XE=M<C+1,1)
350 VE=M(C+1,2>
360 DRAW 3,XB,VB TO XE,VE
370 NEXT C
380 GET A*: IF A*="" THEN 330
390 COLOR 1,3, 6,0: GRAPHIC : END
600 REM BORDER DRAWING ROUTINE
610 POINT 3,0,0
620 DRAW 3 TO 0, 1023
630 DRRW 3 TO 1023,1023
640 DRAW 3 TO 1023,0
650 DRAW 3 TO 0,0
668 RETURN

READV.

53

POLYGON 2

DESCRIPTION

To save having to work out the end of line coordinates for each

line of a polygon it is far easier given a regular N sided polygon to

calculate these values within the program. This is done by the

program POLYGON 2 which simply requires the centre of the

polygon, the radius, the angular offset and the number of sides to

the polygon. The program is configured to draw a series of poly-

gons using data from a data table. The five parameters required

to draw each polygon are then used to calculate a table of

coordinates for each of the lines in the polygon, these values are

then stored in the array m(n,2).

RUNNING THE PROGRAM

All the parameters required by the program are stored directly

within the program. The X and Y coordinates of the central axis

around which the shape is rotated is stored as the variables ex

and cy. The number of lines in the shape is stored as variable n, r

is the radius of the polygon and os is the angular offset. These

values are stored as data statements in lines 300 to 320 (each

line of datastatement holds the data for one polygon). To change

the polygon's shape, orientation or position then change the

values in the data statements, to add extra polygons then add

further lines of data statement values.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 800
96 matrix for line coordinates and angles

1 40 get data from data statement for next polygon

1 80-1 90 convert angles to radians

200-220 calculate angles for each corner and put in array

300-320 data for drawing three polygons

400-460 calculate line coordinates and put in array

480-610 draw polygon
800-860 border drawing subroutine

54

55

1 REM POLYGON 2
2 REM ***************
3 REM
10 REM PROGRAM TO DRAW N SIDED POLVOONS
26 REM GIVEN THE CENTRE, RADIUS,
30 REM AND ANGULAR OFFSET.
40 REM
50 REM SET COLOURS
60 GRAPHIC 2
70 COLOR 3,3,0,10
80 REM DRAW BORDER
90 GOSUB 800
95 Z=0
96 DIM MO0,2>,A<10>
100 REM ROUTINE TO DRAW POLVGON
110 REM INPUT PARAMETERS FROM DATA
120 REM STATEMENTS AND SET UP MATRIX ARRAY.
130 REM
140 READ CX,CY,R,N,OS
145 Z=Z+1
150 Q=H+1
ISO AD=2*ir/N
190 OS=OS/180*it
200 FOR C=l TO N
210 A<O=C*AD+0S
220 NEXT C
300 DATA 400,400,200,8,22.5
310 DATA 600,400,80,3,60
320 DATA 800,720,160,5,36
395 REM
400 REM SET COORDINATES
405 REM
410 FOR X=l TO N
420 M<X,n=CX+R*COS<fKX>>
430 M<X,2>=CY-R*SIN<fi<X>>
440 NEXT X
450 M<H+1,1)=M<1,1>
460 fKN+l,2>=Ma,2>
465 REM
470 REM DRAW POLYGON
475 REM
480 FOR C=l TO N
490 XB=M<C,1)
500 YB=M<C,2>
510 XE=M<C+1,1>
520 VE=MCC+1,2>
530 DRAW 3,.7*XB,YB TO .7*XE,VE
540 NEXT C
550 IF2-C3THEN100
560 GET A*: IF R*="" THEN 560
570 COLOR 1, 3, 6,0: GRAPHIC© ; END
610 DS=1=REM DOT SPACING

56

795 REM
800 REM BORDER DRAWING ROUTINE
810 POINT 3,6,0
820 DRAW 3 TO 0, 1023
838 DRRW 3 TO 1023,1023
840 DRAW 3 TO 1023,0
850 DRRW 3 TO 0,0
860 RETURN

REflDV.

57

RECTANGLE 2

DESCRIPTION

The problem with the program RECTANGLE 1 is that it requires

the coordinates of all four comers. This program will draw

rectangles of any orientation, given the coordinates of two

corners and the length of one side, this is done using a simple

calculation based on Pythagoras' Theorem to calculate a matrix of

corner coordinates.

RUNNING THE PROGRAM

The program requires the input of five parameter values. The first

two are the X and Y coordinates of the bottom left corner and next

two values are the coordinates of the bottom right corner. The last

value is the length of a side at right angles to the side described by

the pair of coordinates points.

PROGRAM STRUCTURE

35 set up coordinate matrix array

50-60 set colours

80 draw border around screen using subroutine at

600
110-119 input bottom left X, Y coordinates

1 20-1 29 input bottom right X, Y coordinates

1 30-1 36 input length of perpendicular side

1 40-295 calculate all corner coordinates of the rectangle

300-400 draw rectangle

600-660 border drawing subroutine

700-760 input data subroutine

800-930 line drawing subroutine

58

59

1 REM RECTRNGLE 2
2 REM #*#*******#*******##*#
3 REM
10 REM PROGRAM TO DRRW R RECTRNGLE
20 REM GIVEN COORDINATES OF TWO CORNERS
30 REM AND LENGTH OF ONE SIDE.
35 DIM M<5,2>
40 REM SET COLOURS
50 GRAPHIC 2

60 COLOR 3.. 3,0.. 10
70 REM DRAW BORDER AROUND SCREEN
80 GOSUE 600
95 REM
100 REM INPUT DATA
110 REM INPUT XI, VI
111 Z$="":T=5
112 CHAR 19,2,"?"
113 GOSUE 700
114 Xl=Z:Z*= ,,n

115 CHAR 19,T,",":T=T+1
116 GOSUB 700
117 Vl=Z = FOR 1 = 1 TO 500'- NEXT I

118 IF XK0 OR VK0 THEN 390
119 CHAR 19,2," "

120 REM INPUT X2,V2
121 Z*="":T=5
122 CHAR 19,2,"?"
123 GOSUB 700
124 X2=Z:Z*=""
125 CHRR 19,T,"," :T«T+1
126 GOSUB 700
127 V2=Z
128 FOR 1=1 TO 500: NEXT I

129 CHAR 19,2,"
130 REM INPUT L
131 ZS="":T=5
132 CHAR 19,2,"?"
133 GOSUB 706
134 L=Z
135 FOR 1=1 TO 500: NEXT I

136 CHAR 19,2,"
140 P=X2-X1
150 Q=V2-V1
160 R=SQR<P*P+Q*Q>
170 LX=FVR
180 LV=Q/R
190 WX=-LV
200 WV=LX
210 M<1,1>=X1
220 M<2,1>=X2
230 MC3, 1>=X2+WX*L

60

240 PK4,1>=X1+WX*L
250 M<5,1>=X1
260 M(i,2>=Vl
270 M<2,2>=V2
280 M<3,2:>=V2+WV*L
290 M<4,2)=V1+WV*L
295 M(5/2)=V1
308 REM DRRW RECTRNOLE
305 REM
310 FOR C=l TO 4
320 XB=M<C,1>
330 VB=M<C,2>
340 XE=M<C+1,1>
350 VE=M(C+1,2)
360 GOSUB 800
370 NEXT C
380 GOTO 100
390 COLOR 11,3,6,0
400 GRAPHIC
410 END
600 REM BORDER DRAWING ROUTINE
605 REM
610 POINT 3,0,0
620 DRRW 3 TO 1023.0
630 DRAW 3 TO 1023,950
640 DRAW 3 TO 0,950
650 DRRW 3 TO 0,0
660 RETURN
695 REM
700 REM INPUT DRTR
705 REM
710 OET A*: IF A$="" THEN 710
720 IF <ASC<A$K4S OR RSC<R*>>57> RND fl*0"-" THEN 75C
730 CHRR 19,T,A$:T=T+1
740 2$=Z$+R* : GOTO 710
750 ZaVflLCZ*)
768 RETURN
795 REM
800 REM LINE DRAWING ROUTINE
805 REM
810 P=XE-XB
820 Q=VE-VB
830 R=SGR<P*P+Q*Q>
840 LX=P/R
850 LV=Q/R
860 FOR 1=0 TO R STEP 6
870 X= . 7* < XB+ 1 *LX

>

880 V=VB+I*LV
890 IF X<0 OR V<0 THEN 920
900 IF XM023 OR V>950 THEN 920
910 POINT 3,X,V

61

920 NEXT I

930 RETURN

REflDV.

62

CIRCLE

DESCRIPTION

Plotting an ordinary circle with the VIC plus Super Expander is

remarkably easy, using the built-in CIRCLE command, which

allows you to specify the central X and Y coordinates, and also

the radius. This will then plot a complete circle on the screen.

However, for many applications we will not want a full circle,

although we will require full image of the circle to be displayed. In

other words, we want to be able to specify a distance between
the points plotted that make up the circumference of the circle.

The program CIRCLE does just that, by use of the POINT
command to plot each individual dot of the circumference to a

specified separation. This is the variable DS in the program listing,

line 134.

RUNNING THE PROGRAM

A number of inputs are required to get the program going. In line

1 1 we input the X and Y coordinates of the centre of the circle,

namely XC and YC, followed in line 120 by the radius RA. Our
fourth input is the separation between the dots as mentioned
earlier, that is the variable DS in line 130. This dot separation is

then converted in line 210 (by multiplying by PI and dividing by
1 80) to form the STEP for the FOR NEXT loop in line 230 which
initiates the plotting process. As we know, 2 PI radians equal

360 degrees, and hence the statement in line 230. Then we just

calculate the distance of the dot in terms of X and Y coordinates
from the centre of the circle, and POINT the point. Line 300 then

sends us back for another run and another circle.

PROGRAM STRUCTURE

60-70 set colours

90 draw broder round screen using subroutine at 400
110 input coordinates of circle centre

1 20 input circle radius

1 30 input dot separation

210-330 draw circle

400-460 border drawing routine
500-560 input data subroutine

63

64

1 REM CIRCLE
2 REM *MMMM*WMMWM.M#*
3 REM
10 REM ROUTINE TO DRAW A CIRCLE
£0 REM SPACING BETWEEN THE DOTS USED
38 REM TO DRAW THE CIRCLE IS VARIABLE
40 REM
58 REM SET COLOURS
55 REM
60 GRAPHIC 2
70 COLOR 3,3,0,10
75 REM
80 REM DRAW BORDER
85 REM
90 GOSUB 400
95 REM
100 REM INPUT CIRCLE DRAWING PARAMETERS
110 REM COORDINATES OF CIRCLE CENTRE
111 Z*="":T=5
112 CHAR 19,2,"?"
113 GOSUB 500
114 XC=Z:Z*=""
115 CHAR 19,T,",":T=T+1
116 OOSUB 500
117 VC»Z:FOR 1=1 TO 500: NEXT I
118 IF XC<C0 OR VC<0 THEN 310
119 CHAR 19,2,

"

»

120 REM CIRCLE RADIUS
121 Z*="":T=5
122 CHAR 19,2,"?"
123 GOSUB 500
124 RA=Z
125 FOR 1=1 TO 500: NEXT I

126 CHAR 19,2,

"

»

130 REM DOT SPACING
131 Z*="":T=5
132 CHAR 19,2, "?"
133 GOSUB 500
134 DS=Z
135 FOR 1=1 TO 500: NEXT I

136 CHAR 19,2,

"

»

195 REM
206 REM DRAW CIRCLE
205 REM
210 DS=nS*ir/180
226 R=RA
230 FOR P=0 TO 2*it STEP DS
240 X=R*COS<P)
250 V=R*SIN<P)
260 X=.7*X+XC
270 V=V+VC

65

275 IF X<0 OR V<C0 OR V>958 OR XM023 THEN 290
289 POINT 3,X,V
290 NEXT P
300 OOTO 100
310 COLOR1,3,S,0
320 GRRFHIC8
330 END
395 REM
408 REM BORDER DRAWING ROUTINE
405 REM
410 POINT 3,0/0
420 DRRW 3 TO 1023,0
438 DRAW 3 TO 1023,958
440 DRAW 3 TO 0,958
458 DRAW 3 TO 8,0
4S0 RETURN
495 REM
500 REM INPUT DRTR
505 REM
510 GET R*:IF R*="" THEN 510
520 IF <RSC<A*X4e OR RSC<R*5>57> RND R*0"-" THEN 55G

530 CHRR 19,T,R*:T=T+1
540 23--Z*+R* : GOTO 510
550 Z=VRL<Zf:>
568 RETURN

RERDV.

66

ELLIPSE

DESCRIPTION

An ellipse is a circle offset on two sides from the central point in

either the X or the Y direction. Using the routine developed in the
program Circle, together with a couple of additions to handle the
elliptical effect, we can plot an ellipse, or indeed any number of
ellipses, with variable dot spacing. The offsets are specified in

line 140, and determine the degree of ellipse. The variables OX
and OY are used, and obviously if OX is zero we get an ellipse in

the Y direction, and vice versa. Naturally we can give values to
both of these to get a number of interesting effects.

RUNNING THE PROGRAM

In structure this is very similar to the Circle program earlier, but a
couple of major differences are worthy of note. In line 1 40 we are

asked to input the variables OX and OY to specify the degree of

ellipse. These are subsequently used in our ellipse drawing routine
in lines 240-250 to calculate precisely where our point is to be
plotted. The rest of the program, including the routine to specify
the separation of the dots (lines 210 and 230) is virtually the
same.

PROGRAM STRUCTURE

60-70 set colours

90 draw border round screen using subroutine at 400
110 input coordinates of ellipse centre
1 20 input ellipse radius

1 30 input dot separation

140 input elliptical offsets in X and Y direction
210-360 draw ellipse

400-460 border drawing routine

500-560 data input subroutine

67

•.««***"""""**<**:.•.

• •"• 14*.

t J

68

1 REM ELLIPSE
2 REM #**M#M*M*MMMmW*
3 REM
10 REM ROUTINE TO DRAW RN ELLIPSE USING OFFSETS
28 REM SPRCING BETWEEN THE DOTS USED
30 REM TO DRRW THE EL IPSE IS VARIABLE
46 REM
50 REM SET COLOURS
55 REM
60 GRAPHIC 2
70 COLOR 3,3,0,10
75 REM
80 REM DRAW BORDER AROUND SCREEN
85 REM
90 GOSUB 400
95 REM
100 REM INPUT ELLIPSE DRAWING PARAMETERS
105 REM
110 REM COORDINATES OF ELLIPSE CENTRE
111 Z*="":T=5
112 CHAR 19,2,"?"
113 GOSUB 500
114 XC=Z:Z*=""
115 CHAR 19,T,",":T«T+1
116 GOSUB 500
117 VC=Z=FOR 1=1 TO 500JNEXT I
118 IF VC=0 OR XC«0 THEN 350
119 CHAR 19,2,"
120 REM ELLIPSE RADIUS
121 Z*="":T=5
122 CHAR 19,2,"?"
123 GOSUB 500
124 RA=Z
125 FOR 1 = 1 TO 500'' NEXT I
126 CHAR IS, 2,"
130 REM DOT SPACING
131 Z$="":T=5
132 CHAR 19,2,"?"
133 GOSUB 500
134 DS=Z
135 FOR 1=1 TO 500: NEXT I
136 CHAR 19,2," «

140 REM ELLIPTICAL OFFSETS IN X RND V RXIS
141 Z*="":T=5
142 CHAR 19,2, "?"
143 GOSUB 500
144 OX=Z:Z*=""
145 CHAR 19,T,",":T=T+1
146 GOSUB 50R
147 OV=Z
14S FOR 1=1 TO 500: NEXT I

69

143 CHRR 19,2,"
195 REM
200 REM DRAW ELLIPSE
205 REM
210 DS=DS*ir/180
220 R=RA
230 FOR P=0 TO 2*1T STEP DS
235 REM
240 X=R*COS<P)*OX
250 V=R*SIfKP)*OV
260 X=X*.7+XC
270 V=V+VC
275 IF X<0 OR V<0 OR V>950 THEN 290
2S0 POINT 3,X,V
290 NEXT P
300 GOTO 100
350 COLOR 1,3,6,0
360 GRAPHIC
370 END
395 REM
400 REM BORDER DRAWING ROUTINE
405 REM
410 POINT 3,0,0
420 DRAW 3 TO 1023,0
430 DRAW 3 TO 1023,950
440 DRAW 3 TO 0,950
450 DRAW 3 TO 0,0
460 RETURN
495 REM
500 REM INPUT DATA
505 REM
510 GET A*: IF Af="" THEN 510
520 IF <ASC<A*X43 OR ASC(A*»57) AND A$0"." THEN 55(

530 CHAR 19,T,R*:T=T+1
540 Z*=Z*+A* : GOTO 510
550 Z=VAL<Z*>
560 RETURN

READV.

70

ARC 1

DESCRIPTION

The VIC Super Expander command DRAW, while not being with-
out its uses, suffers from a number of limitations. Like the
CIRCLE command, you can only draw complete, filled in lines.
Also, whether we use it in conjunction with the third parameter
(other than X and Y coordinates of the finishing point), namely
the angle through which it must turn, or not, we must always
remember that DRAW will start off from the last point plotted by
CIRCLE, POINT or the previous DRAW statement. In order to
draw an arc from anywhere to anywhere, and to be able to have
user-definable dot spacing, the routines in the program ARC1
were developed.

RUNNING THE PROGRAM

A number of inputs are required. In line 1 10 we must specify XC
and YC, that is, the centre of the arc. Line 1 20 allows us to
specify RA, the arc radius, and line 1 30 lets us input the dot
separation DS. Two further inputs in line 140 contain the crux of
the matter, and give us that much needed flexibility over DRAW,
by allowing us to specify the start and end angles of the arc.
Thus, we are not limited in where we can start drawing. The
drawing routine in lines 250 to 3 1 is similar to the ones in earlier

programs in this series.

PROGRAM STRUCTURE

60-70 set colours

90 draw border round screen using subroutine at 400
1 10 input coordinates of arc centre
1 20 input arc radius
130 input dot separation
140 input start and end angles for arc
210-360 draw arc

400-460 border drawing routine
500-560 data input subroutine

71

72

1 REM ARC 1

2 REM *m**M***mM#mMMM
3 REM
10 REM ROUTINE TO DRAW AN ARC
28 REM SPACING BETWEEN THE DOTS USED
30 REM TO DRAW THE ARC IS VARIABLE
40 REM
50 REM SET COLOURS
55 REM
60 GRAPHIC 2
70 COLOR 3.3/0, 10
75 REM
80 REM DRAW BORDER AROUND SCREEN
85 REM
90 GOSUB 400
95 REM
100 REM INPUT ARC DRAWING PARAMETERS
105 REM
110 REM COORDINATES OF CENTRE OF ARC
111 Z*="":T=5
112 CHAR 19,2, "?"
113 GOSUB 500
114 XC=Z:2*=""
115 CHAR 19,T,",":T=T+1
116 GOSUB 500
117 VC=2=F0R 1=1 TO 500: NEXT I
118 IF XC=0 OR VC=0 THEN 350
119 CHAR 19,2,"
120 REM ARC RADIUS
121 2*="" =T=5
122 CHAR 19,2,"?"
123 GOSUB 500
124 RA=Z
125 FOR I*U TO 560: NEXT I
126 CHAR 19,2/"
130 REM DOT SPACING
131 Z$="<> :T=5
132 CHAR 19,2,"?"
133 GOSUB 500
134 DS=Z
135 FOR 1=1 TO 500: NEXT I
136 CHAR 19,2,

"

»

140 REM START AND END ANGLES FOR ARC
141 Z*="":T=5
142 CHAR 19,2,"?"
143 GOSUB 500
144 RS=Z :

Z$= "

"

145 CHAR 19, T, "," :T=T+1
146 GOSUB 580
147 AE=Z
148 FOR 1=1 TO 500: NEXT I

73

143 CHRR 19,2,"
195 REM
260 REM DRRW RRC
205 REM
210 DS=DS#ir/'i80
22© RS=RS*ir/180
230 RE=flE#ir/180
240 R=Rfl

250 FOR P=RS TO RE STEP DS
260 X=R*COS<P>
270 V=R*SIN<P>
280 X=.?*X+XC
290 V=V+VC
295 IF X<0 OR V<0 OR V>950 THEN 310
300 POINT 3,X,V
310 NEXT P
320 GOTO 100
350 COLOR 1 j 3; 6,0
360 GRAPHIC
370 END
395 REM
400 REM BORDER DRAWING ROUTINE
405 REM
410 POINT 3,0,0
420 DRRW 3 TO 0,950
430 DRRW 3 TO 1023,950
440 DRAW 3 TO 1023,0
450 DRAW 3 TO 0,0
460 RETURN
495 REM
560 REM INPUT DRTR
505 REM
510 GET R*:IF R*="" THEN 510
520 IF <flSC<fl*><48 OR flSC<fl*>>57> RHD R*<>". " THEN 550
530 CHRR 19,T,R*:T=T+1
540 Z*=Z$+R$: GOTO 510
550 Z=VRL/Z*>
560 RETURN

RERDV.

74

DISK 1

DESCRIPTION

When examining the program CIRCLE, you probably realised that

if you repeated the process again and again, but specifying a

different radius each time, it would be possible to build up a
complete disk rather than just a circle. This is certainly true, but
the time taken would be rather a long one, and you'd probably
get fed up with running through the program time after time.
Consequently, the program DISK 1 takes the drudgery out of the

process by incorporating a couple of new routines to do it all for

you.

RUNNING THE PROGRAM

Again, we have to input a number of variables before we get to
the meat of the program. As before, line 1 1 allows us to specify

the coordinates of the disk centre, line 120 the disk radius, and
line 1 30 the dot spacing. In drawing the disk however, we go
through two FOR NEXT loops rather than the usual one. The inner

loop, lines 230 to 290, draws just one circle as we've seen
before. The loop in line 220 and 300 then uses the previously
specified dot separation to step up the radius of the circle to draw
another one, until finally we reach the full radius originally input in

line 120.

PROGRAM STRUCTURE

60-70 set colours
90 draw border round screen using subroutine at 400
1 1 input coordinates of disk centre
1 20 input disk radius
1 30 input dot separation

210-290 draw arc, incorporating:

-

230-290 draw circle, and
220-370 step up radius and draw another one
400-460 border drawing routine

500-560 data input subroutine

75

.•.•••.*.

76

1 REM DISK 1

2 REM ***********************
3 REM
10 REM ROUT I HE TO DRAW fl DISK
20 REM SPRCING BETWEEN THE DOTS USED
30 REM TO DRRW THE DISK IS VARIABLE
46 REM
50 REM SET COLOURS
55 REM
£0 GRAPHIC 2
70 COLOR 3,3,0, 10
75 REM
SO REM DRRW BORDER RROUND SCREEN
85 REM
90 GOSUB 400
95 REM
100 REM INPUT DISK DRAW I NO PARAMETERS
105 REM
110 REM COORDINATES OF CENTRE OF DISK
111 2*="" :T=5
112 CHAR 19,2,"?"
113 GOSUB 500
114 XC=Z:Z*=""
115 CHAR 19,T,",":T=T-*1
116 GOSUB 500
117 VC=Z:FOR 1=1 TO 500: NEXT I

118 IF XC=0 OR VC=0 THEN 350
119 CHAR 19,2,"
120 REM DISK RADIUS
121 Z$=*"":T=5
122 CHAR 19,2,"?"
123 GOSUB 500
184 "Rfl-Z

125 FOR 1=1 TO 500: NEXT I

126 CHRR 19,2,

"

"

130 REM DOT SPACING
131 Z$="":T=5
132 CHAR 19,2,"?"
133 GOSUB 500
134 DS=Z
135 FOR 1=1 TO 5O0: NEXT I

136 CHRR 19,2,

"

195 REM
200 REM DRAW DISK
205 REM
210 D=DS*ir/180
220 FOR R=DS TO RA STEP DS
230 FOR P=0 TO 2*1T STEP D*C40/R>
240 X=R*COS<P)
250 V=R*SIN<P>

77

260 X=.7*X+XC
270 V=V+VC
280 IF X<6 OR V<0 OR Y>950 THEN 300
290 POINT 3,X,Y
308 NEXT P
310 NEXT R
320 GOTO 100
350 COLOR 1,3,6,0
360 GRRPHIC 8
370 END
395 REM
400 REM BORDER DRAWING ROUTINE
405 REM
410 POINT 3,0,0
420 DRAW 3 TO 0,950
430 DRAW 3 TO 1023,950
448 DRAW 3 TO 1023,0
450 DRAW 3 TO 0,0
460 RETURN
495 REM
500 REM INPUT DATA
505 REM
510 GET A*: IF A$="" THEN 510
520 IF <ASC(Af><48 OR ASC<A*>>57> AND A*<>"." THEN 5!

530 CHAR 19,T,A$=T=T+1
540 Z*=Z*+A* ' GOTO 510
550 2=VRL<Zt>
560 RETURN

READV.

78

SEGMENT

DESCRIPTION

Although DRAW allows one to draw an arc, it does not allow one
to draw an arc with variable dot spacing. By drawing various
circles to variable dot spacing, a disk with the same dot spacing
can be plotted. Combining both of these routines resulted in the
program Segment, presented here. Using this program we can
draw a disk segment, again with the spacing between the dots
defined by an input (line 130), and moreover we can make that
segment as large, or as small, as we like. As you can see from the
illustration, combining a number of runs of the program enables
us to link different disk segments together.

RUNNING THE PROGRAM

As usual, line 1 10 lets us input the coordinates of the arc centre,
1 20 the arc radius, and 1 30 the spacing between the dots. In line

140 we input the start and end angles for the arc. The program
following is then fairly straightforward. In lines 250 to 310 we
plot just one arc, using the POINT command for each point of the
arc. The outer FOR NEXT loop, in lines 240 and 320, uses the dot
separation to increase the radius of the arc, and then the inner
loop plots out another arc. This continues until we reach the final

radius of the arc, RA, as input in line 1 20, which gives us our final

arc and completes the segment. By specifying a different dot
spacing we can build up a whole series of arcs joined onto each
other.

PROGRAM STRUCTURE

60-70 set colours
90 draw border using routine at 400
1 10 input central coordinates of arc
1 20 input radius of arc
1 30 input dot spacing
140 input start and end angles for arc
240,320 outer drawing routine, incorporating:
250-370 individual arc drawing routine
400-460 border drawing subroutine
500-560 data input subroutine

79

80

1 REM SEGMENT
2 REM ***********************
3 REM
10 REM ROUTINE TO DRAW R DISK SEGMENT
20 REM SPACING BETWEEN THE DOTS USED
30 REM TO DRAW THE SEGMENT IS VARIABLE
40 REM
56 REM SET COLOURS
60 GRAPHIC 2
70 COLOR 3,3,0,10
75 REM
80 REM DRAW BORDER AROUND SCREEN
85 REM
90 GOSUB 400
95 REM
100 REM INPUT SEGMENT DRAWING PARAMETERS
105 REM
110 REM COORDINATES OF SEGMENT CENTRE
111 2*="":T=5
112 CHAR 19,2,"?"
113 GOSUB 500
114 XC=Z:Z*=""
115 CHAR 19,T,",":T*T+1
116 GOSUB 500
117 VC=Z=FOR 1=1 TO 500=NEXT I

118 IF XC=0 OR VC=0 THEN 350
119 CHAR 19,2,"
120 REM SEGMENT RADIUS
121 Z*="":T=5
122 CHAR 19,2,"?"
123 GOSUB 500
124 RA=Z
125 FOR 1 = 1 TO 500 i NEXT I

126 CHAR 19,2,"
130 REM DOT SPACING
131 Z*="":T=5
132 CHAR 19, 2,"?"
133 GOSUB 500
134 DS*Z
135 FOR I«l TO 500= NEXT I

136 CHAR 19,2,"
140 REM START AND END ANGLES FOR SEGMENT
141 Z$="":T=5
142 CHAR 19,2,"?"
143 GOSUB 500
144 AS=Z:Z$=""
145 CHAR 19,T,",":T=T+1
146 GOSUB 500
147 AE=Z
148 FOR 1=1 TO 500: NEXT I

149 CHAR 19,2,

"

195 REM

81

200 REM DRAW SEGMENT
205 REM
210 D=DS*nV180
220 AS=RS*ir/130
230 RE=RE*it^180
240 FOR R=DS TO RR STEP DS
250 FOR P=AS TO RE STEP D*<40/R>
260 X=R*COS(P>
270 V=R#SIN<P>
280 X=.7*X+XC
298 V=V+VC
295 IF X<0 OR Y<0 OR V>950 THEN 310
300 POINT 3,X,Y
310 NEXT P
320 NEXT R
330 GOTO 10©
350 COLOR 1,3,6,0
360 GRAPHIC
370 END
395 REM
400 REM BORDER DRAWING ROUTINE
405 REM
410 POINT 3,0,0
420 DRAW 3 TO 0,950
430 DRAW 3 TO 1023,950
440 DRAW 3 TO 1023,0
450 DRAW 3 TO 0,0
460 RETURN
495 REM
500 REM INPUT DATA
505 REM
510 GET A*: IF A*="" THEN 510
520 IF CASC<A$><48 OR ASC<:A$;>57) AND RfO". " THEN
530 CHAR 19,T,R$:T=T+1
540 Z*=Zsr+Rf : GOTO 510
550 Z=VRLCZ*>
560 RETURN

READY.

82

PIECHART

DESCRIPTION

The culmination of all the plotting routines for circles, arcs, and
disks results in the program PIECHART. Of use in business,
educational, and indeed just about any computing environment,
piecharts enable us to show clearly and (quite strikingly) visually

all manner of different data. We mentioned when describing the
program Segment, that by building up various runs through the
program it was possible to have different segments next to each
other. This program takes the chore out of that exercise, by
assigning various variables first of all, and then using DATA
statements to generate the necessary information. Obviously,
this program will be of most use to you when using your own
data.

RUNNING THE PROGRAM

This program differs from the earlier Segment one by having no
input statements. Instead, we define the variables XC and YC to
be the central coordinates in line 110, and the variable RA to be
the radius in line 1 20. Needless to say you can change these to
suit your own requirements. The data for making up the different

arc segments is contained in lines 500 to 560. In order, we have
the dot separation, the start angle for the segment, and the end
angle. Again, these can be whatever you require. By reading
these in lines 1 30 and 140, we then follow the segment plotting
routine in lines 240 to 320. When line 1 50 detects a zero dot
separation (as read in from line 540) the program comes to a halt.

PROGRAM STRUCTURE

60-70 set colours

90 draw border using routine at 400
1 1 define coordinates of centre of piechart
1 20 define radius of piechart

130 READ dot spacing
140 READ start and end angles of segment
1 50 if spacing of zero, then STOP
210-320 segment drawing routine
330 back for more data
400-460 border drawing subroutine
500-540 data for piechart

83

E5Ss^f:W

84

1 REM PIECHRRT
2 REM M*MMW.#.W*WM*#-M#*m
3 REM
10 REM ROUTINE TO DRAW A PIECHRRT USING
20 REM VARIABLE SPACING BETWEEN THE DOTS
30 REM TO DIFFERENTIATE BETWEEN SEGMENTS.
40 REM
53 REM SET COLOURS
60 GRAPHIC 2
70 COLOR 3.3/0.10
75 REM
80 REM DRAW BORDER
90 GOSUB 400
95 REM
100 REM GET PIECHART DATA FROM DATA TABLES - LINE 500+
105 REM
110 XC=512:VC»312!REM COORDINATES OF DISK CENTRE
120 RA=300=REM DISK RADIUS
130 READ DS=REM DOT SPACING
140 READ AS, RE: REM START AND END ANGLES FOR SEGMENT
150 IF DS=0 THEN 350
195 REM
200 REM DRAW SEGMENT
205 REM
210 D=DS*tr/180
220 AS=AS*ff/lS0
230 AE=AE*ir/180
240 FOR R=DS TO RA STEP DS
250 FOR P=RS TO RE STEP D*<40/R>
260 X=R*COS<P>
270 V=R*SINCP)
280 X=.7*X+XC
290 V=V+VC
300 POINT 3/X/V
310 NEXT P
320 NEXT R
330 GOTO 100
350 GETR* : IFA*=" "THEN350
360 COLOR 1,3/6.0
370 GRAPHIC
380 END
395 REM
400 REM BORDER DRAWING ROUTINE
405 REM
410 POINT 3/0/0
420 DRAW 3 TO 1023..
430 DRAW 3 TO 1023.. 1023
440 DRAW 3 TO 0/1023
450 DRAW 3 TO 0/0
460 RETURN
495 REM

85

500 DfiTfl 50,1,70
510 BFITR 20,71,200
520 DflTfl 30,201,300
530 DRTfi 10,301,360
540 BflTR 0,0,0

RERDV.

86

oz

6

<

87

GRAPH

DESCRIPTION

Each character position is made up of an 8 x 8 dot matrix, which

means that we can plot points to a resolution of 1 76 in the X axis

and 1 76 in the Y axis. The two programs GRAPH and GRAPH2
use the full resolution of the screen to plot respectively a graph of

SIN (X) and SIN (X) with COS (X), using the VIC commands
POINT, and DEF FN to define the function to be plotted. The
programs are identical except for an additional routine in GRAPH2
to plot COS (X), and a couple of lines to identify the function and
display a title.

RUNNING THE PROGRAM

The INPUTting of variables is not required in either program, as

we are simply taking the function a(x) to represent sin (x30)60 in

the program GRAPH, and in addition b(x) to represent cos

(x30)60 in the program GRAPH2. These are defined in line 1 30 in

the former program, and lines 1 30-1 31 in the latter. It then runs

through lines 200 to 330 to plot out the actual function. These
routines could obviously be incorporated in further programs to

plot different functions, just by altering the definitions in lines

130-131.

PROGRAM STRUCTURE

50-60 set colours

90 draw border around screen using subroutine at 400
130 define function(s) to be plotted

1 50-1 80 draw Y axis and label graph(s)

200-330 graph plotting routine

400-460 border drawing subroutine

88

GRRPH OF SIN(X)

S*
X \ r

* \ +

.• N, .•

•• \ *

/ \ /
%

\

\
\

0*

*

*
4

\SIN(X>

3.60

89

1 REM GRRPH
2 REM ***********************
3 REM
10 REM PROGRAM TO PLOT M THE GRAPH OF A FUNCTION
20 REM
30 REM SET COLOURS
40 REM
50 GRAPHIC 2
60 COLOR 3.3,0,10
70 REM
80 REM DRAW BORDER
65 REM
98 GOSUB 400
95 REM
100 REM DEFINE FUNCTION TO BE PLOTTED
105 REM
110 REM THE NUMERICAL VALUES IN THE EXAMPLE ARE
120 REM USED TO SCALE THE PLOT TO REASONABLE
125 REM DIMENSIONS
130 DEF FNA<X>=SIN<X/'120)*400
135 REM
140 REM DRAW V AXIS AT
145 REM
150 POINT 3,0,512
160 DRAW 3 TO 1023,512
180 CHAR 1,2, "GRAPH OF SINCX>"
185 REM
190 REM PLOT GRAPH
195 REM
200 FOR X=0 TO 1023
210 V=FNA<X)
220 POINT 3,X,512-V
230 NEXT X
300 GETR* ! IFR*= "

" THEN300
310 COLOR 1,3,6,0
320 GRAPHIC
330 END
395 REM
400 REM BORDER DRAWING ROUTINE
405 REM
410 POINT 3,0,0
420 DRAW 3 TO 0,1023
430 DRAW 3 TO 1023,1023
440 DRAW 3 TO 1023,0
450 DRAW 3 TO 0,0
460 RETURN

1 REM GRRPH 2
2 REM ***********************
3 REM

90

16 REM PROGRAM TO PLOT M THE GRRPH OF TWO FUNCTIONS
20 REM
30 REM SET COLOURS
40 REM
50 GRAPHIC 2
60 COLOR 3.3,0,10
70 REM
80 REM DRAW BORDER
85 REM
90 GOSUB 400
95 REM
100 REM DEFINE FUNCTION TO BE PLOTTED
105 REM
110 REM THE NUMERICAL VALUES IN THE EXAMPLE ARE
120 REM USED TO SCALE THE PLOT TO REASONABLE
125 REM DIMENSIONS
130 DEF FNA<X)=S I NCX/l 205*400
131 DEF FNB<X)=COS<X/120>*400
135 REM
140 REM DRAW V AXIS AT
145 REM
150 POINT 3,0,512
160 DRAW 3 TO 1023,512
170 CHAR 2,S,"SIN<X>"
180 CHAR 18,1,"C0S<XV
185 REM
190 REM PLOT GRAPH
195 REM
200 FOR X=>0 TO 1023
210 Y=FNA<X>
220 POINT 3,X,512-Y
230 V=FNB<X)
240 POINT 3,X,512-V
250 NEXT X
260 CHAR 11,0, "0"
270 CHAR 11,6, "ISO"
280 CHAR 11, 13, "360"
300 GETA* : I FA*= "

" THEN300
310 COLOR 1,3,6,0
320 GRAPHIC
330 END
395 REM
400 REM BORDER DRAWING ROUTINE
405 REM
410 POINT 3,0,0
420 DRAW 3 TO 0,1023
430 DRAW .3 TO 1023,1023
440 DRAW 3 TO 1023,0
450 DRAW 3 TO 0,0
460 RETURN

91

3D GRAPH

DESCRIPTION

Building on from the routines for plotting two dimensional

functions, we find that it is relatively easy to design a program for

plotting in three dimensions. The program labelled 3D Graph does
just that. Although we are relying on the same VIC Super
Expander command POINT, our routine for plotting the function

is, of necessity, rather more complicated this time, as we are

trying to emulate a three dimensional image on what is, after all, a

two dimensional screen. Of special interest in this routine is the

double IF statement in line 310, which performs a

straightforward RETURN depending on the values of the variables

P and Z.

RUNNING THE PROGRAM

No variables are INPUT in this program, as our function is defined

in line 1 50, and the area to be plotted in is determined by the

scale given to X in line 220. This in turn determines the scale of Y
to be plotted, by line 260. Line 270, the start of the inner of our

two plotting loops, plots all the points on the Y axis for the value

of X in the outer loop, which commences at line 220. We then

move onto the next point on the X axis, and plot all the Y values

there, and so on. By changing the definition in line 1 50 we can
plot out a whole series of different functions.

PROGRAM STRUCTURE

60-70 set colours

90 draw border round screen using subroutine at 400
1 50 define function to be plotted

210-380 plotting routine

390-393 program termination

400-460 border drawing subroutine

92

i REM 3D GRRPH
2 REM *************************
3 REM
10 REM THIS ROUTINE PLOTS THE GRAPH OF fl

93

20 REM FUNCTION IN 3 DIMENSIONS
30 REM
40 REM
50 REM SET COLOURS
60 ORRPHIC 2
70 COLOR 3,3.0-10
80 REM DRAW BORDER RROUND SCREEN
90 GOSUB 400
95 REM
100 REM DEFINE FUNCTION TO BE PLOTTED
105 REM
110 REM THE FUNCTION IS CHANGED BV
115 REM ALTERING THE CONTENTS OF LINE 150
120 REM
150 DEF FNA<Z>=90*EXP(-12*Z^600)
195 REM
200 REM PLOT GRAPH
205 REM
210 K=S
220 FOR X=-100 TO STEP 1

230 L»0
240 P=l
250 Z1=0
260 V 1 "ft* I NT < SQR < 1 0000-X*XVK>
270 FOR V=V1 TO -VI STEP -K ,

280 Z»INU80+FNR<SQRCX#X+V*Y)>-.?07106*V>
290 IF Z<L THEN 350
295 OOSUB 380
300 L=Z
310 IF P=0 THEN GOSUB 380: IF z=Zl THEN OOSUB 380
320 POINT 3,. 7*5*X+5 12, 1023-5*2
325 POINT 3,512-.7*5*X,1023-5*Z
330 IF P=0 THEN Zl-Z
340 P=0
350 NEXT V
360 NEXT X
370 GOTO 390
380 RETURN
390 GETA* : I FA*= "

" THEN390
391 COLOR 1,3,6,0
392 GRAPHIC
393 END
395 REM
400 REM BORDER DRAWING ROUTINE
405 REM
410 POINT 3,0,0
420 DRAW 3 TO 1023,0
430 DRAW 3 TO 1023,1023
440 DRAW 3 TO 0,1023
450 DRAW 3 TO 0,0
460 RETURN

94

INTERPOLATE

DESCRIPTION

Determining a set of data is all very well, but it is the interpolation

of that data that produces the all important results. One common
method doing this is to take the data and turn it into points on a

graph, and then perform the interpolation between those points.

The program "Interpolate" does that, by assuming that you
already have your data in the form of X, Y co-ordinates (here we
store them as data statements in line 180), and plotting the

appropriate point out within a defined area (lines 220 to 230
define the top and bottom of the Y axis and left and right of the X
axis), before finally 'joining up' the points in whatever form you
desire (see Running the Program). You could quite easily

incorporate your own data into this program simply by changing
the data statements in line 1 80.

RUNNING THE PROGRAM

The main bulk of the work is done a) by the line 1 80, which stores
the data as X, Y co-ordinates, and b) line 200, which determines
which point we start at (here it is the first one), which one we
finish at (here it is the twelfth), and which points we interpolate
between (here it is every one, although by changing the variable

SP in line 200 we could easily take every other point, for

instance). Once we've calculated the scaling factors in lines 410
to 490, and turned these into point increments in lines 510 and
520, we plot the actual point in line 640, and the line between
each point by the routine in lines 670-730.

PROGRAM STRUCTURE

60-70 set colours
90 draw border round screen using subroutine at

1000
1 1 0-1 60 read and store the data
1 80-1 81 data stored as X, Y co-ordinate
200 determine start and finish points, and

separation
220-230 determine position and dimensions of graph on

screen
310-380 draw border round graph, and label graph
41 0-490 determine scaling factors

95

5 1 0-520 convert scaling factors to point increments

610-720 point and line drawing routine

1 000-1 060 border drawing routine

96

1 REM INTERPOLATE
2 REM ****#****##************
3 REM
10 REM PROGRAM TO DRAW A GRAPH BV INTERPOLATING
20 REM A SET OF POINTS STORED AS DATA STATEMENTS IN
30 REM LINE 180.
43 REM
50 REM SET COLOURS
55 REM
60 GRAPHIC 2
70 COLOR 3, 3.. 0,10
75 REM
60 REM DRAW BORDER AROUND SCREEN
S5 REM
90 GOSUB 1000
95 REM
100 REM INITIALISE DATA
105 REM
110 DIM X(12>
120 DIM V<12>
130 FOR 1=1 TO 12
140 READ X<IJ
150 READ V<I>
160 NEXT I

165 REM
170 REM DATA STORED AS X AND V COORDINATE
175 REM
180 DATA1 , 10, 2, 25, 3, 30,4, 20, 5, 40, 6, 30
181 DATA 7,50,8,20,9,25,10,50,11,30,12,20
185 REM
190 REM MIN DIMENSION =1, MAX =12/ SEPERATION =1
195 REM
200 DN=l:DX=12:SP»l
205 REM
210 REM POSITION AND DIMENSIONS OF GRAPH OH SCREEN
215 REM
220 XL=75=XR=955
230 VB=900=VT=400
295 REM
300 REM DRAW BORDER AROUND GRAPH
305 REM
310 POINT 3,XR+10,VB+1O
320 DRAW 3 TO XR+10,VT-10
330 DRAW 3 TO XL-10,YT~10
340 DRAW 3 TO XL-10,VB+10
350 DRAW 3 TO XR+10,VB+10
355 XI=<XR-XL)/<DX-DN)
360 FOR X=XL TO XR STEP XI
365 FOR A=10 TO 30
370 POINT 3,X,VB+A
375 NEXT A: NEXT X

97

380 CHRR 1,1, "INTERPOLATED ORRPH"
395 REM
460 REM CALCULATE SCALING FACTORS
405 REM
410 VI=-1000800
420 Y2= 1000000
430 X1=V1=X2=V2
440 FOR I=DN TO DX STEP SP
450 IF VKVCI) THEN Y1<=V<I>
460 IF V2>VCI> THEN V2=y<I>
470 IF Xl<Xa> THEN X1=X<I>
430 IF X2>X(I> THEN X2»X<I>
490 NEXT I

495 REM
500 REM CONVERT SCALING FACTORS INTO POINT
505 REM INCREMENTS
510 fi=<XR-XL>/<Xl-X2>
520 B»<VB-VTVm-V2>
595 REM
600 REM PLOT GRAPH
605 REM
610 FOR I=BN TO DX STEP SP
620 X=<XL+<X<I>-X2)*fl>
630 V=CVB-CVCI>-V2>*E>
660 POINT 3,X,Y
670 Q=I+SP
630 IF Q>DX THEN 900
690 X=<XL+<XCQ)-X2)*A>
700 V=<VB-<V<Q>-V2>*B)
710 DRAW 3 TO X,Y
720 NEXT I

900 GETA* : I FA$= "
" THEN900

910 COLOR 1.3,6,0
920 GRAPHIC
930 END
1000 REM DRAW BORDER AROUND SCREEN
1005 REM
1810 POINT 3,0,0
1020 DRAW 3 TO 0,1023
1030 DRAW 3 TO 1023,1023
1040 DRAW 3 TO 1023,0
1050 DRAW 3 TO 0,0
1068 RETURN

REflDV.

98

>
DC
o
LU

O
LU

Q
>
LU
'I ;

\-

if)

99

HI-RES CURSOR

DESCRIPTION

Many of the arcade games about at present require the
movement of some kind of 'sight' around the screen, to get you
to the right position before firing. Similarly, a routine to move a
sight, or indeed a cursor over the screen, would have many uses
in plotting, design, and graphic programs generally. The two
programs here provide just such a routine, but achieved in slightly

different manners. What they do have in common is the method
of moving the cursor (here it is a cross) about, which uses the
keys 5, 6, 7 and 8 in the following way:-

-4-

Thus, pressing the 8 key would move the cursor up, etc. This
routine lies in lines 210 to 260. The two programs differ in that
a) the cursor is designed differently in each one, and b) the first

program erases whatever screen contents the cursor passes
over: the second one doesn't.

RUNNING THE PROGRAM HI-RES CURSOR

Having drawn our border around the screen, the program
positions the cursor at the X, Y coordinate of 24,24; and sets the
increment between cursor movements (the variable S in line 1 20)
to be 6. The program then simply waits until you press the
appropriate key, increases or decreases X or Y accordingly, and
then checks to see whether you are still within the screen
boundary. If you are, it erases the previous cursor, draws a new
one, and then awaits the pressing of another key.

PROGRAM STRUCTURE FOR HI-RES CURSOR

60-70 set colour

90 draw border round screen using subroutine at 600
1 10-120 set up parameters
210-260 check for key press
310-340 check if within boundary
410-440 erase previous cursor
460-490 draw new cursor

510 back to check for key press

600-660 border drawing subroutine

100

RUNNING THE PROGRAM HI-RES CURSOR 2

This follows roughly the same lines as Hi-Res Cursor, although
our cursor is now defined in data statements contained in lines

1 50-1 70, and stored in the array C (5,5). This 'cursor' can now
be anything you like, simply by changing the data statements.
We plot the position of the cursor in lines 610-680. However, the
point of this program is that we do NOT erase the screen
contents, so the routine from lines 410 to 480 erases the cursor
but then does an INVERSE on what has just gone, thus restoring

the original screen display. Before plotting the cursor again we
must save the screen contents into our array M(5,5), and this is

performed by the function in lines 510 to 550, using the VIC
command RDOT. This tells us what colour a certain position is,

and we use this array again when going back to erase the cursor
and re-trace the screen contents.

Different keys are used for cursor movement:
5: F3
6: F7
7: F1

8: F5

PROGRAM STRUCTURE FOR HI-RES CURSOR 2

60-70 set colours

90 fill the entire screen with characters
105-110 set up parameters
120-170 define 'cursor' and read data statements
210-260 wait for appropriate key press
310-345 check if within boundary
410-480 erase previous cursor and restore screen contents
510-550 save screen contents
610-680 plot new cursor
910 go back and wait for another key to be pressed

101

1 rem hi -res cursor
2 ren ####*#***##*###**#**#
3 REM
10 REM PROGRAM TO MOVE R HIGH RESOLUTION CURSOR
20 REM ABOUT THE SCREEN UNDER CONTROL OF THE
30 REM KEYBOARD
40 REM
50 REM SET COLOURS
60 GRAPHIC 2
70 COLOR 3.3.0,3
75 REM
80 REM DRAW BORDER AROUND SCREEN
85 REM
90 GOSUB 600
95 REM
100 REM SET UP PARAMETERS
105 REM
110 X-24 :

V=24
: REM START POSITION

120 S=6:REM CURSOR MOVEMENT INCREMENTS
130 GOTO 450
195 REM
200 REM INPUT CURSOR MOVEMENT FROM KEYBOARD
205 REM
210 A=PEEK097)
215 X8=X:V0=V
220 IF A=2 THEN X=X-S : OOTO 308
230 IF A=58 THEN Y<=V+S : OOTO 300
240 IF A=3 THEN V=V-S = GOTO 390
250 IF A=59 THEN X=X+S : GOTO300

102

260 GOTO 210
295 REM
300 REM CHECK CURSOR WITHIN BOUNDS
305 REM
310 IF X<24 THEN X«=24
320 IF X>999 THEN X=999
330 IF Y<24 THEN V=24
340 IF V>999 THEN Y=999
395 REM
400 REM ERRSE PREVIOUS CURSOR
405 REM
410 POINT 4,X0-12,Y0
420 DRAW 4 TO X0+12,Y0
430 POINT 4,X0,Y0-12
440 DRAW 4 TO X0,Y0+12
445 REM
450 REM PLOT. NEW CURSOR
455 REM
460 POINT 3,X-12,Y
470 DRAW 3 TO X+12,V
480 POINT 3,X,Y-12
490 DRAW 3 TO X,Y+12
495 REM
500 REM DO RGRIN
505 REM
510 GOTO 210
595 REM
600 REM DRRW BORDER AROUND SCREEN
605 REM
610 POINT 3,0,0
620 DRAW 3 TO 0,1023
630 DRAW 3 TO 1023,1023
640 DRAW 3 TO 1023,0
650 DRAW 3 TO 0,0
660 RETURN

READY.

1 REM HI -RES CURSOR 2
2 REM ****************!+;*•**•***
3 REM
10 REM PROORRM TO MOVE A HIGH RESOLUTION CURSOR ABOUT
20 REM THE SCREEN UNDER CONTROL. OF THE KEYBOARD.
30 REM THE CURSOR DOES NOT ERASE EXISTING SCREEN
35 REM DISPLAYS.
40 REM
50 REM SET COLOURS
60 GRAPHIC 2
70 COLOR 3.. 3,0,3

103

75 REM
80 REM FILL SCREEN WITH CHARACTERS
85 REM
90 FOR 1=0 TO 19
91 FOR J=0 TO 19
92 CHAR J, I, "9"

93 NEXT J
94 NEXT I

93 REM
100 REM SET UP PARAMETERS
105 X»5:V=S:REM START POSITION
110 S=3:REM CURSOR MOVEMENT
120 DIM C<3,5>,M<5,3>
125 FOR 1=1 TO 5
130 FOR J=l TO 5
135 READ C<J,I>
140 NEXT J
145 NEXT I

150 DATA 0,0,1,3,0
155 DATA 0,0,1,0,0
160 DATA 1,1,1,1,1
165 DATA 9,0,1,0,0
170 DATA 0,0, 1,0,0
190 GOTO 500
195 REM
200 REM INPUT CURSOR MOVEMENT FROM KEYBOARD
203 REM
210 A=»PEEK<197)
215 X0=X:V0=V
220 IF A=47 THEN X=X-S:QOTO 300
230 IF A=S3 THEN V=V+S:GOTO 300
240 IF A=39 THEN Y=V-S:GOTO 300
250 IF A=33 THEN X=X+S:GOTO300
260 GOTO 210
293 REM
300 REM CHECK CURSOR WITHIN BOUNDS
303 REM
310 IF X<3 THEN X=5
320 IF XM63 THEN X=»163
330 IF V<!5 THEN V=5
340 IF VM63 THEN V=1S3
395 REM
400 REM ERASE PREVIOUS CURSOR
405 REM
410 FOR I=-2 TO 2
420 FOR J=-2 TO 2
430 IF M<J+3, I+3)O0 THEN 460
440 POINT 3, <J+X0)*S, <I+V0>*6
445 REM
430 GOTO 470
453 REM

104

460 POINT 4, <;j+X0V*6, a+V0)*6
470 NEXT J
489 NEXT I

493 REM
500 REM SAVE SCREEN CONTENTS
503 REM
510 FOR is-2 TO 2
320 ROR J=-2 TO 2
330 MCJ+3.. I+3)=RD0TC(J+X'>*ic

:. ^I+Vl*^
340 NEXT J
530 NEXT I

ISJQKJ REM
£00 REM PLOT NEW CURSOR
603 REM'
610 FOR I=-2 TO 2
620 FOR Ja-2 TO 2
620 IF CCJ+3, I+3>*0 THEN 660
640 POINT 3,<:x+j)*s, <V+I>*6
650 GOTO 670
66<S POINT 4, '.:x+.:n*6, <I+V)*6
670 NEXT J
690 NEXT I

,395 REM
900 REM TO RORIN
903 REM
910 GOTO 210

RERDV.

105

CHARACTER BUILDING

DESCRIPTION

Although there are numerous different graphics characters on the
VIC, you may still want to define your own characters at times.
This is easily done using the built-in character generator. The
following program enables you to edit the existing characters
using the cursor control keys. Note that this program will not run

with the Super Expander cartridge in place.

The program is separated into two stages: Choosing the character

you want to change, and editing that character.

RUNNING THE PROGRAM

To get a user defined character you must first move the character
generator from the character generator ROM into the top end of

RAM. Then the area of RAM being used must be protected by
decreasing the end of memory pointer, as in lines 4-270. See the
section on Hi-res for more information.

Having edited the character, you may return to see what it looks
like, then go back and save it as a data statement. Or you may
save it as a data statement as it is. Line 3000 is an example of
how the data statement is formatted; the first value is the
memory location and the next eight values are the values to go
into memory from that location onwards. When you have finish-
ed editing, you can delete the rest of the program and have data
that can be used in other programs.

PROGRAM STRUCTURE

4-270 initialise program by moving generator ROM into

RAM
300 set line no. for data statements
330-340 define functions for screen poke location and value

for character
360-390 print up grid for new char, option
400-480 wait for input from keyboard
5 1 0-6 1 cursor control options

106

710-770 define new character options

8 1 0-840 review character set options

1 01 0-1 1 70 display character set and options

1210-1300 display edit options
1 510-1 550 restore normal VIC operation mode and end
1610-1 700 update edited character into character set

1810-1910 display character for editing in an 8x8 grid

201 0-21 60 add data statement on to end of program and re-

run

3000 example data statement

107

1 REM CHRRRCTER BUILDING
2 REM *******************#*#*
3 REM
4 P0KE56,PEEK<56>-2
100 REM PET BENELUX
110 REM EXCHANGE
128 REM NETHERLANDS
125 REM
130 POKE 36379,42
140 PR I NT" 131?* CHARACTER BUILDING #"
150 POKE 900,0
160 RUN 170
170 CS=256*PEEK-C52>+PEEK<51>
1S0 FOR I=CS TO CS+5H
190 POKE I, PEEK (32763+ I -CS>
200 NEXT I

210 PRINT"ni5 RUN 280"
220 PR I NT "RUN"
230 POKE 198,3
240 POKE 631,19
250 POKE 632,13
260 POKE 633,13
270 POKE 56,PEEKC56)+2:END
280 S*=7680 : CL=22
290 CS=256*PEEK < 52) +PEEK C 5 1

>

300 CR=0--LN=3000+PEEK<900>
310 P«12!B0-l:BR-l
320 POKE 36879,42
330 DEFFNA<XX>=S+R*CL+C:REM SCREEN POKE LOCATION
340 DEFFNB<XX)=8#R+C:REM SCREEN POKE VALUE FOR CHAR
350 GOTO 1000
360 PRINT'TM" :GOSUB 1200
370 PRINT"a"; :FOR 1=0 TO 7
3S0 PRINT" "

390 NEXT I = F=0
400 PRINT"S3" =R=0:C=0
410 Z=FNfl<0>
420 IF F=0 THEN 460
430 IF Z=ZL THEN 450
440 POKE 2L,IL:ZL=Z.'IL=PEEKCZL)
450 POKE Z+30720,0
460 POKE Z+30720,0
470 GET R*:IF fi*="" THEN 470
480 POKE Z+30720,

1

490 REM
500 REM CURSOR CONTROL OPTIONS
505 REM
510 IF R*="G" THEN 1500
520 IF A*="M" AND C=7 THEN C=0 : GOTO 410
530 IF Af="H" THEN C*=C+l'-GOTO 410
540 IF A*="H" AND C=0 THEN C=7 : GOTO 410

108

550 IF R$="||" THEN C*C-1'G0T0 410
560 IF R*="W" AND R=7 THEN R=0:GOTO 410
570 IF A*="M" THEN R=R+1:Q0T0 410
580 IF R$="n" flHD R=0 THEN R=7:Q0T0 410
590 IF A*="n" THEN R*R-l:GOTO 410
600 IF R*="M" THEN 400
610 IF F=l THEN 800
695 REM
700 REM DEFINE NEW CHARACTER OPTIONS
705 REM
710 IF fl*="+" THEN POKE Z, 81: GOTO 410
720 IF R*="-» THEN POKE 2, 46: GOTO 410
730 IF R$="=» THEN 1600
740 IF R$=»n" THEN 370
750 IF A$="R" THEN 1000
760 IF A*='"B" THEN 2000
770 GOTO 410
795 REM
600 REM REVIEW CHARACTER SET OPTIONS
805 REM
810 CR=FNE<0)
820 IF R*="N" THEN POKE 36869,240 : GOTO 360
830 IF A*="E" THEN POKE 36869,240 :

F=0
= GOTO 1800

840 GOTO 410
995 REM
1000 REM DISPLAV CHARACTER SET OPTIONS
1005 REM
1010 POKE 36369, 255 :R=4:C=0
1020 2L=FNA<0>:iL=32
1030 F=l :PRINT":J".:
1040 PRINT"a»3ABCDEFG"
1050 PRINT"HIJKLMHO"
1060 PRINT"PQRSTUVW"
1070 PRINT"XV2[£3'N-"
1030 PRINT" !"CHR* < 34 >" #$5i« '"

1090 PRINT" 0*+,-./"
1100 PRINT"01234567"
1110 PRINT"89: ;<=>?"
1120 PR I NT " S8"SPC <1 3 > " SOPT I ONSB"
1130 PRINTSPCO0VSN NEW CHAR""
1140 PRINTSPCaOV'BE EDIT CHARS"
1150 PRINTSPCOeVSQ QUITS"
1160 BC=PEEK< 38400)
1170 GOTO 410
1195 REM
1200 REM EDIT OPTIONS
1205 REM
1210 PRINT" SSst" SPC < 1

3

~t " BTIPT I ONSH"
1220 PRINT
1230 PRINTSPC<P)"S+E RDD DOT"
1240 PRINTSPC<P>"»-E ERRSE"

109

1250 PRINTSPC<P>"3=1 UPDATE"
1260 PRINTSPC<P>"aRH REVIEW"
1270 PRINTSPCCPV'aQE QUIT"
1280 PRINTSPC<P>"aBE ADD DRTR"
1290 PR I NTSPC <P+ 1) " nSTRTEMENT "

130G RETURN
1495 REM
1500 REM QUIT
1505 REM
1510 POKE 56, PEEK <56 > +2
1528 POKE 36369,240
1530 POKE 36879,27
1540 PR I NT"SB BVE!"
1550 END
1595 REM
1600 REM UPDATE
1605 REM
1610 PRINT"a";
1620 X=CS+S*CR
1630 FOR R=0 TO 7=SM=0
1640 FOR C=0 TO 7=D=7-C
1650 SM=SM-2tD*<PEEK<FNR<0>>=81>
1660 NEXT C
1670 POKE X+R,SM
1630 PRINTSPCC8>;SM
1690 NEXT R:R=0:C=0
1700 GOTO 410
1795 REM
1800 REM EDIT CHRR
1805 REM
1810 PR INT "IT
1S20 X=CS+8*CR
1830 FOR R=0 TO ? V=PEEK<X+R)
1840 FOR C=0 TO 7:Z=FNR<8>
1850 Q=46=V=V*2
I860 IF V>255 THEN Q=81 •• V=V-256
1870 POKE Z,Q
1890 NEXT C,R
1890 R=0:C=0
1900 GOSUB 1200
1910 GOTO 410
1995 REM
2600 REM ADD DATA STATEMENTS
2085 REM
2010 X=CS+8*CR
2820 PRINT":KKKI«SHISWr
2036 println;"drta";
2040 printright*<str$<x),len'cstr*<:x>)-1>;
2050 FOR l=x TO X+7
2060 PRINT",";
2070 PR I NTR I GHT$ (. STR* < PEEK < I > > , LEN (. STR$ < PEEK < 1 > > > - 1 > .

110

2080 NEXT I

2099 PRINT: PR I NT "RUN S"
2103 POKE 900/ PEEK <900>+l
2110 POKE 193/ 9
2120 FOR 1=0 TO 8
2130 POKE 1+631/13
2140 NEXT I

2150 POKE 56/ PEEK < 56 >+2
2160 END
3000 DRTR7472/4S/72/72/48/74/63/53/0

RERDV.

11 1

BIG CHARACTER

DESCRIPTION

The program Big Character displays the use of the POINT
command. This enables us to plot points to the full resolution of
the VIC, that is 1 60 pixels by 1 60 pixels. The routine shown here,
in lines 220 to 270, could be used in any program where we
require a character that has previously been defined with the use
of data statements, to be displayed on the screen at a specified
central X,Y coordinate.

RUNNING THE PROGRAM

The data for our large character is stored in the data statements in

lines 1 1 00 to 1 1 80. The first two numbers define the size of the
character array which we will use to store the data; note that this
is dynamically dimensionted on reading that data. Here we are
storing the information in binary form: that is, using the digits
and 1 to define whether a particular pixel is to be 'lit' or 'unlit'. If

you hold the book far enough away from you, you can probably
see the character actually drawn out by those data statements.
Having stored all the information in the array C(X,Y), we input the
variables XC and YC to define the central coordinate for displaying
the character, and finally the routine in lines 220 to 270 plots out
the character on the screen. Line 300 then sends us back to plot
out another one, and so on.

PROGRAM STRUCTURE

60-70 set colours

90 draw border round screen using subroutine at
500

1 20-1 80 set up character array from data statements
2 1 0-2 1 9 input character centre coordinates
220-270 plot character on screen
300 back again for another go
500-560 border drawing subroutine
1000-1060 input routine
1 1 00-1 1 80 data statements for character

112

£> <s> ©

© <2>

€>

®

113

1 REM BIO CHRRRCTER
2 REM ***********************
3 REM
10 REM THIS PROGRAM GENERATES LRRGE CHARACTERS US INC
20 REM THE POINT COMMAND/ WITH CHARACTER DATA
30 REM STORED IN AN ARRRV
40 REM
50 REM SET COLOURS
60 GRAPHIC. 2
70 COLOR 3.3,0,10
75 REM
80 REM DRAW BORDER
65 REM
90 GOSUB 503
95 REM
100 REM SET UP CHARACTER ARRRV FROM DATA STATEMENTS
110 REM
120 READ X/V
130 DIM C<X/V>
140 FOR 1=1 TO V
150 FOR J=l TO X
160 READ CCJ/I)
170 NEXT J
180 NEXT I

190 REM
200 REM INPUT CHARACTER COORDINATES RND DRAW
205 REM CHARACTER
210 REM INPUT CHARACTER CENTRE COORDINATES
211 Z*= J=5
212 CHAR 19/2/"?"
213 GOSUB 1000
214 XC=A:Z*=""
215 CHAR 19/J,",":J=J+1
216 GOSUB 1000
217 VC=A=FOR 1=1 TO 500 : NEXT I

218 IF XC<0 OR VC<0 THEN 350
219 CHAR IS/ 2/"
220 FOR 1=1 TO V
230 FOR J=l TO X
240 IF C<J/I>=0 THEN 260
241 IF XC+6*>;j-X/2><:0 THEN 260
242 IF VC+6*a- ,TV2X0 THEN 260
243 IF VC+6*(I-V/2»95@ THEN 269
250 POINT 3/XC+6*<J-'iV2:>/VC+6*<I~X/2>
260 NEXT J
270 NEXT I

2S0 RESTORE
300 GOTO 208
350 REM END
360 COLOR 1/3/6/0
370 GRAPHIC

114

380 END
495 REM
500 REM DRAW BORDER AROUND SCREEN
505 REM
510 POINT 3,0,0
520 DRAW 3 TO 1023,0
530 DRAW 3 TO 1023,950
540 DRAW 3 TO 0,950
550 DRAW 3 TO 0,0
560 RETURN
995 REM
1000 REM ROUTINE TO INPUT DATA
1005 REM
1010 GET A$:iF A*="" THEN 1010
1020 IF <RSC<fl*><48 OR ASC<A*»57> AND RfO"-" THEN 1050
1030 CHAR 19,J,A* = J>=J+1
1040 Z*=Z*+R$: GOTO 1010
1050 fl=VAL<Z*>
1060 RETURN
1095 REM
1100 DATA 12,12
1102 DATA 0,0,0,0,1,1,1,1,0,0,0,0
1105 DATA 0,0,0,1,0,0,0,0,1,0,0,0
1107 DATA 0,0,1,0,0,0,0,0,0,1,0,0
110S DATA 0,1,0,0,0,0,0,0,0,0,1,0
1110 DATA 1,0,0,1,1,0,0,1,1,0,0,1
1120 DATA 1,0,0,0,0,0,0,0,0,0,0,1
1130 DATA 1,0,0,0,0,0,0,0,0,0,0,1
1140 DATA 1,0,0,0,1,0,0,1,0,0,0,1
1150 DATA 0,1,0,0,0,1,1,0,0,0,1,0
1160 DATA 0,0,1,0,0,0,0,0,0,1,0,0
1170 DATA 0,0,0,1,0,0,0,0,1,0,0,0
1180 DATA 0,0,0,0,1,1,1,1,0,0,0,0

READV.

115

(J

(J
h-
LLJ

C
CD

C3

<o
c/)

117

SCALE 1

DESCRIPTION

The ability to scale a shape is one of the most useful in the

computer's repertoire, and finds a home in many a program. For

instance, computer aided design would not be where it is today

without this function. Unfortunately, the VIC does not have a

scaling command, and hence this routine. In its most simple form

as we present it here, scaling just involves taking an object (here

we have a rather simplistic view of a tree!), increasing the size of

each line that makes up the object, and plotting out our new

drawing. What this particular program suffers from is movement

of the object as new ones are plotted: in other words, our original

design does not get surrounded by larger ones, or itself surrounds

smaller ones, but just becomes part of a grand row of small,

medium and large trees.

RUNNING THE PROGRAM

In line 1 1 we dimension our shape data arrays to contain 20

variables each. The data comes from the statements in lines 210

to 250, and as you can see the first number read is the number of

sets of data statements to come: in our case 4. Dimensioning to

20 is just a precaution! In order, the data statements present the

coordinates X, Y of the start of one of the lines that make up the

tree, and the coordinates of the end of that line. Hence, four

statements for our four line drawing. The scaling factor S is then

input in line 280: when S % 1 we have the original size, a number

less than 1 is smaller, and a number greater than 1 gives us a

larger image. Scaling factors are then calculated in lines 310 to

360, and our new image plotted out in lines 410 to 530, by

drawing out each line in turn. Our usual variable DS is used for dot

spacing, and you can specify this to be whatever you like. As

pointed our earlier, this program suffers from not having a

constant central coordinate.

PROGRAM STRUCTURE

60-70 set colours

90 draw border using subroutine at 800
1 1 0-1 20 set up shape and scaled shape data arrays

140-170 read data for shape
210-250 data for shape

118

280-285 input scaling factor
310-360 calculate scaling

410-530 plot each line in turn to specified size

600 go back for another go with a new scaling factor
800-860 border drawing subroutine
900-930 end
1000-1110 input routine

119

1 REM SCALE 1

2 REM ***********************
3 REM
10 REM ROUTINE TO CHANGE THE SCALE OF A SHAPE IN
20 REM THE SHAPE DATA TABLE
30 REM
40 REM
50 REM SET COLOURS
60 GRAPHIC 2
70 COLOR 3.3.0,10
75 REM
80 REM DRAW BORDER AROUND SCREEN
85 REM
90 GOSUB 800
95 REM
100 REM SET UP AND INPUT DATA FOR SCALINO
185 REM
106 REM SHAPE DATA ARRAVS
107 REM
110 DIM X(28>,V<20>.U<20>,V(20>
115 REM
116 REM SCALED SHAPE DATA ARRRV
117 REM
120 DIM A<20>,B<20),C<20>,D<20>
125 REM
130 REM SET UP SHAPE DATA ARRAY
135 REM
140 READ NLJREM NUMBER OF LINES IN SHAPE
150 FOR 1=1 TO NL
160 READ Xa>,Y<I>,U<i:>,V<I>
170 NEXT I

200 REM SHAPE DATA
205 REM
210 DATA 4
220 DATA 100,90.. 100, 130
230 DATA 100,150,90,130
240 DATA 90,130,110,130
250 DATA 110,130,100,150
260 REM
280 REM INPUT SCALING FACTOR
281 Z*="" :T=5
282 CHAR 19,2,"?
283 GOSUB 1000
234 S=Z
285 IF S=0 THEN 900
290 REM
380 REM DO SCALING
305 REM
310 FOR 1=1 TO NL
320 fl(I)=X(D*S
330 E<n=Y<I)*S

120

340 C(D=I.K1)*S
350 D<IJ*VCI)#S
360 NEXT I

395 REM
400 REM DRRW SHRPE
405 REM
410 FOR J=l TO NL
420 DS=1
430 P=C<J>-A<J>
440 q=b<j.>-:ekj:>
450 R=SQR<P*P+Q*o^
460 LX=P/R
470 LV=Q/R
480 FOR 1=0 TO R STEP DS
490 X=6*<B<J>+I#U-0
500 V=930-S*<BCJ>+I*LV>
502 IF X<0 OR V<0 THEN 52PI
504 IF XM023 OR V>950 THEN 520
510 POINT 3.X,

V

520 NEXT I

530 NEXT J
600 GOTO 280: REM DO RORIN
795 REM
800 REM DRRW BORDER RROUND SCREEN
805 REM
810 POINT 3,0,0
820 DRAW 3 TO 1023,0
830 DRAW 3 TO 1023,950
840 DRAW 3 TO 0,950
850 DRRW 3 TO 0,0
860 RETURN
900 REM END PROGRRM
910 COLOR 1,,3,G,0
920 GRRPHIC
930 END
995 REM
1000 REM INPUT DRTR
1005 REM
1010 GET R*:IF R*=>»» THEN 1010
1020 IF CRSCCA*><48 OR RSC<fl*:>>37> AND R*O m ." THEN 11*0
1038 Z*=Z*+R*
1035 CHRP 19, T,m
1040 T=T+1
1050 GOTO 1010
1100 Z=VRUZ$>
1110 RETURN

RERDV.

121

SCALE 2

DESCRIPTION

Again here we are taking a shape, and scaling it in both X and Y
directions, but with the major fault of the previous program
rectified. This time we have a routine to correct the movement of

the object as it is scaled, and plot everything out from a common,
constant X,Y coordinate. Thus we have the same shape,

expanded in both X and Y, or indeed contracted in X and Y, all

centred on the same coordinates. This new routine is quite a

straightforward 7 line one (lines 310 to 350). One other

difference is that our object is rather more exotic this time, being
made up of six lines rather than just 4. You can of course
experiment with objects that are far more complicated than this:

just be careful about the data statements in lines 210 to 255, and
make sure you have all the X,Y coordinates right, and more
importantly in the right order.

RUNNING THE PROGRAM

As with Scale 1, we dimension our shape and scaled shape data
arrays (lines 110 to 120), read in the shape data (lines 140 to

170), and give the data statements (lines 210 to 255). The
scaling factor S is input in line 280: as before a number greater
than 1 means a larger shape, and less than 1 means a smaller

one. The illustration shown ranges from S = 1 .5 down to S =
0. 1

.
The same routines as previously used are here to perform

the scaling and draw the shape. The only new one is contained in

lines 310 to 350, which calculates the central coordinates for our
larger (or smaller) object: these are the variables CX and CY.

PROGRAM STRUCTURE

60-70 set colours

90 draw border using subroutine at 800
1 10-120 set up shape and scaled shape data arrays
1 40-1 70 read data for shape
210-255 data for shape
280-285 input scaling factor

310-350 calculate new central coordinates
410-460 calculate scaling

510-630 plot each line in turn to specified size

700 go back for another go with a new scaling factor
800-860 border drawing subroutine

122

900-930 end
1000-1110 input routine

1 REM SCRLE 2
2 REM ***********************
3 REM
10 REM ROUTINE TO CHANGE THE SCALE OF A SHAPE IN
28 REM THE SHAPE DATA TABLE
30 REM US I NO THE SHAPES CENTRE
40 REM
50 REM SET COLOURS
60 GRAPHIC 2
7G COLOR 3,3,0,1©

123

75 REM
80 REM DRRW BORDER AROUND SCREEN
85 REM
90 GOSUB SO@
95 REM
100 REM SET UP AND INPUT DATA FOR SCRLING
105 REM
106 REM SHAPE DATA ARRAVS
107 REM
110 DIM X<20>,V<20>,U<20>,V<20>
115 REM
116 REM SCALED SHAPE DATA ARRAV
117 REM
120 DIM AC20>,E<20),C<20>,D<20)
125 REM
130 REM SET UP SHAPE DATA ARRAV
135 REM
140 READ NUREM NUMBER OF LINES IN SHAPE
150 FOR 1=1 TO NL
160 READ X<I),Va>,lKI>;Va>
170 NEXT I

200 REM SHAPE DATA
205 REM
210 DATA 6
220 DATA 100,110,140,110
230 DATA 140,110,170,90
235 DATA 170,90,140,70
240 DATR 140,70,100,70
250 DATA 100,70,70,90
255 DATA 70,90,100,110
260 REM
280 REM INPUT SCALING FACTOR
281 Zt="":T=5
282 CHAR 19,2,"?
283 OOSUB 1000
284 S=Z
285 IF S=0 THEN 900
290 REM
300 REM FIND CENTRE
305 REM
310 CX=0:CV=0
320 FOR J=l TO NL
330 CX=CX+X<J>+U<J>
335 CV=CV+V(J)+V<J)
340 NEXT J
345'CX=CX/<:2*NL>
350 CV=CV/<2*NL>
395 REM
400 REM DO SCRLING
405 REM
410 FOR J=l TO NL

124

429 R<J)=CX+(CX-X(J>>#S
430 E<J)=CV+<CV-V;j)?*S
440 C<J)=CX+CCX-LKJ>>*S
450 D < J > =CV+ < CV-V < J > > *S
460 NEXT J
495 REM
500 REM DRAW SHAPE
505 REM
510 FOR J=l TO HL
523 DS=1
530 P=C(J?-nCJ>
540 Q=D<J)-B<J)
550 R=SQR(P*P+Q*Q)
560 LX=P/R
570 LV=Q/R
580 FOR 1=0 TO R STEP DS
590 X=6*Cfi<:j)+l*LX-40>
600 V S=950-6#<ECJ> + I#LV>
602 IF X<0 OR V<0 THEN 620
604 IF XM023 OR V>950 THEN 620
610 POINT 3,X,V
620 NEXT I

€30 NEXT J
700 OOTO 230: REM DO AGAIN
795 REM
800 REM DRAW BORDER AROUND SCREEN
805 REM
810 POINT 3,0,0
S20 DRAW 3 TO 1023,0
830 DRAW 3 TO 1023,950
940 DRAW 3 TO 0,950
850 DRAW 3 TO 0,0
em RETURN
900 REM END PROORAM
910 COLOR 1,3,6,0
920 GRAPHIC
930 END
995 REM
1000 REM INPUT DRTA
1005 REM
1010 GET A$:IF R*=»» THEN 1010
102O IF <RSC<fl$><48 OR ASC<!R*>>57? RND A*0" ."' THEN 1100
1030 Z'Jr-=Z$+R$

1035 'CHAR 19, T, A*
1040 T=T+1
1050 GOTO 1010
1100 Z=VAL<2$>
1110 RETURN

READV.

125

STRETCH 1

DESCRIPTION

Stretching, although on the surface the same thing as scaling, is

in fact a very different animal. Scaling merely produces a larger or

smaller image of our original object, based either around the same
or a different central coordinate. Stretching, on the other hand,

does not necessarily change every line of our object to the same
extent, but ideally we do want to stick to the same central

coordinates. You can see in the illustrations here that we have a

normal image, one stretched in the X axis, and one stretched in

the Y axis. With the program being written the way that it has,

you can combine stretching in both X and Y axes, without having

to use the same stretching factor for each one.

RUNNING THE PROGRAM

Until we reach line 280 the program follows the same lines as our

earlier Scale 2 program. That is, we set up our shape and scaled

shape data arrays (lines 1 1 to 1 20), and read in the data in lines

210 to 255 by the routine in lines 140 and 170. You will note

that we are using the same object as last time, that is, a six sided

figure. Lines 280-288 let us input the scaling factors SX and SY
in the X and Y axes, and these are later used in lines 410 and 460
to calculate the scaling and stretching figures. Before and after

that we find the central coordinates of our object (lines 310 to

350), and actually plot the figure out (lines 510 to 630) one line

at a time.

PROGRAM STRUCTURE

60-70 set colours

90 draw border using subroutine at 800
1 10-120 set up shape and scaled shape data arrays

140-170 read data for shape

210-255 data for shape

280-288 input scaling factors

310-350 calculate new central coordinates

410-460 calculate scaling

510-630 plot each line in turn to specified size

700 go back for another go with a new scaling factor

800-860 border drawing subroutine

900-930 end
1000-1110 input routine

126

11

127

1 REM STRETCH 1

2 REM ***********************
i REM
IS REM ROUTINE TO STRETCH OR CHANGE THE SCfiLE OF R SHAPE

iS 1m IN THE SHAPE DATA TRBLE. IT USES THE SHRPES

30 REM CENTRE AND DIFFERENTIAL X,Y, SCALING FACTORS.

40 REM
50 REM SET COLOURS
60 GRAPHIC 2
70 COLOR 3,3,0, 10
75 REM
S0 REM DRAW BORDER AROUND SCREEN

85 REM
90 GOSUB 800
95 REM
100 REM SET UP AND INPUT DRTfl FOR SCALING

105 REM
106 REM SHAPE DATA ARRRVS
107 REM
110 DIM X<20>,V<20>,UC20>,V<20>
115 REM
116 REM SCALED SHAPE DATA RRRAV
117 REM
120 DIM A<20>,B<20>,C<20),D<20>
125 REM
130 REM SET UP SHAPE DATA ARRRV
135 REM
140 READ NLJREM NUMBER OF LINES IN SHAPE

150 FOR 1=1 TO NL
160 RERD XCI),V<I),U(I),V<I>
170 NEXT I

200 REM SHAPE DATA
205 REM
210 DATA 6
220 DATA 100,110,140,110
230 DATA 140,110,170,90
235 DATA 170,90,140,70
240 DATA 140,70,100,70
250 DATA 100,70,70,90
255 DATA 70,90,100,110
?60 REM
230 REM INPUT SCRLING FACTORS IN X AND V AXIS

281 Z*="" : T=5
232 CHAR 19,2,"?
233 GOSUB 1000
284 SX=Z
285 CHAR 19,T,",":T=T+1
286 2$="" :Z=0: GOSUB 1000

£88 IF SX=0 OR SV=8 THEN 900
290 REM

128

300 REM FIHIl CENTRE
305 REM
310 CX=0:CV=0
320 FOR J=l TO NL
330 CX=CX+X<J>+tKJ>
335 CV=CV+V<J)+V<J>
340 NEXT J
345 CX«CXA2*NL>
350 CV=CVA2*NL>
395 REM
400 REM BO SCRLING AND STRETCHING
405 REM
410 FOR J=l TO NL
420 R«J)=CX+CCX-X<J>>*SX
430 E<J)=CV+<CV-Vi:j>)*SV
440 C<J)=CX+(CX-UCJ>>*SX
450 r<J)=CV+(CV-V<J)>*SV
460 NEXT J
495 REM
500 REM DRRW SHRPE
505 REM
510 FOR J=l TO NL
520 DS=1
530 P=CCJ)-fl<J>
540 Q=D<J>-BCJ>
550 R=SQR<P*P+Q*Q>
560 LX=P/R
570 LV=Q/R
530 FOR 1=0 TO R STEP BS
590 X=6*<A<J>+I*LX-40>
600 V*930-6#<B(J)+I*LV)
602 IF X<0 OR V<0 THEN 620
604 IF XM023 OR Y>950 THEN 620
610 POINT 3,X,V
620 NEXT I

630 NEXT J
700 GOTO 230! REM DO RGRIN
795 REM
300 REM DRRW BORDER AROUND SCREEN
305 REM
810 POINT 3/0,0
820 DRAW 3 TO 1023,0
830 DRRW 3 TO 1023,950
340 DRRW 3 TO 0,350
850 DRRW 3 TO 0,0
860 RETURN
900 REM END PROORRM
910 COLOR 1,3,6,0
920 GRAPHIC
930 END
995 REM

129

1000 REM INPUT BRTR
1005 REM
1010 GET R*:iF R**"" THEN 1010
1020 IF <RSC<R*K4S OR RSCXRf >>57> RND R*<>". " THEN 1100
1030 Z*=Z$+R$
1035 CHRR 19,T,R*
104© T=T+1
1050 GOTO 1010
1100 Z=VRL<Z*>
1110 RETURN

RERDV.

130

STRETCH 2

DESCRIPTION

The Stretch 1 program as described is an extremely useful one,
but alas it is not without its limitations. Although we can stretch

images in both X and Y directions, one thing which we do not
have control over is the angle of stretching. At present,
everything is going at ninety degree angles. What if, as is very
common in computer aided design, and indeed other fields, we
want to stretch something at, say, 37 degrees to the X axis? The
routine in lines 410 to 650 in this program performs just that

function. I will not go into the mathematical detail here, many
excellent books have been written on the subject, but will simply
say that it works!

RUNNING THE PROGRAM

As in previous programs, we first of all set up the shape and
scaled shape data arrays before reading in the actual data itself

from lines 210 to 240. This time we revert to a much simpler
shape, that of a rectangle. In line 280 we again input the scaling

factors in the X and Y axes, and in line 290 we input AS, the
angle of stretching. This is the angle by which we will evaluate
our shape above the X axis. In other words, if AS is equal to 45
degrees, as it is in the illustration, the line joining the two corners
of the rectangle will be at 45 degrees to the X axis. After
calculating the centre of the newly formed shape, the scaling,

stretching and rotating routine in lines 410 to 650 comes into

effect. As you can see this is quite complicated, and I do not
intend to go into any detail. This book is designed to help you
with graphics on the VIC, not give you a thesis on mathematical
theory! The program needs a 1 6K expansion RAM.

PROGRAM STRUCTURE

60-70 set colours

90 draw border using routine at 1 000
1 1 0-1 20 dimension shape and scaled shape data arrays
1 40-1 70 read shape data
2 1 0-240 shape data statements
280-288 input scaling factors in X and Y axis
289-293 input angle of rotation;

convert degrees to radians

131

310-350 calculate centre coordinates

41 0-650 perform scaling, stretching and rotation

calculations

7 1 0-830 draw new shape line by line

840 go back for another go

1 000- 1 060 border drawing subroutine

1 1 00-1 1 60 input routine

132

1 REM STRETCH 2
2 REM *##**##**#******#***#**
3 REM
10 REM ROUTINE TO STRETCH OR CHANGE THE SCRLE OF R- SHAPE
20 REM IN THE SHAPE DATA TABLE. IT USES THE SHAPES
30 REM CENTRE AND DIFFERENTIAL X,Y, SCALING FACTORS.
40 REM PLUS AH ANGLE OF ROTATION RLONG WHICH STRETCHING
43 REM TAKES PLACE.
46 REM
50 REM SET COLOURS
60 GRAPHIC 2
70 COLOR 3,3,0.10
75 REM
SO REM DRRW BORDER RROUND SCREEN
85 REM
90 GOSUB 1100
95 REM
100 REM SET UP AND INPUT DATA FOR SCALING
105 REM
106 REM SHAPE DATA ARRAVS
107 REM
110 DIM X<20>,V<20>,U<20>,V<20>
115 REM
116 REM SCALED SHAPE DATA RRRRV
117 REM
120 DIM fl<20>,B<20:>,C<20;>,D<20>
125 REM
130 REM SET UP SHAPE DATA ARRRV
133 REM
140 RERD NL:REM NUMBER OF LINES IN SHAPE
150 FOR 1=1 TO NL
160 RERD X<I>,Y<I),U<I>,,V<I>
170 NEXT I

200 REM SHAPE DATA
205 REM
210 DATA 4
220 DATA 100,120,150,120
230 DATA 130,120,150,90
235 DATA 150,90,100,90
240 DATA 100,90,100,120
260 REM
280 REM INPUT SCALING FACTORS IN X AND V AXIS
281 Z$="":T=5
232 CHAR 19,2,"? "

283 GOSUB 1000
OS4 SX= ''

285 CHAR 19,T,",":T=T+1
286 2*="" :Z=0: GOSUB 1000
287 SV=Z
288 IF SX=0 OR SY=0 THEN 900
289 REM INPUT ANGLE OF STRETHCING

133

290 Z*="":T=T+5
291 CHRR 19,T-3,"7"
292 OOSUB 1000
293 RS=Z*ir/180
29S REM
300 REM FIND CENTRE
305 REM
310 CX=0:CV»0
320 FOR J=l TO NL
330 CX=CX+X<J>+U<J>
335 CV»CV+V(J>+V<J>
340 NEXT J

345 cx=cys<2*NL>
350 CV«CV/<2*NL>
395 REM
400 REM DO SCFiLINO RND STRETCHING
405 REM
410 FOR 1=1 TO NL
420 X1»X<I>-CX
430 V1=V(I>-CV
440 F=CX1#C0S<RS>+V1#SIN<RS>>#SY
450 0=<-Xl#SIN<RS>+Vl*COS<RS>>*SX
460 X2=F*C0S<flS)-0#SIN<flS)
470 Rn>»X2+CX
480 V2=F*SINCRS)+G#C0S<RS)
490 B<I)=V2+CV
500 X1=UCI)-CX
510 V1=V<I)-CV
520 F=<X1*C0S<RS>+V1#SIN<RS>>#SV
530 G=<-Xi*SIN<RS>+Vl*COS<:RS>>#SX
540 X2=F*C0S<RS)-G#SIN<RS>
550 C<I>=X2+CX
560 Y2=F#SIN<RS>+G*C0S<RS>
570 D<I)*V2+CV
650 NEXT I

700 REM DRAW SHRPE
705 REM
710 FOR.J=l TO NL
720 BS=1
730 P=C<J>-R'CJ)
740 Q=B<J>-B<J>
750 R=SQR<P*P+Q*GJ>
760 LX=P/R
770 LY=CVR
780 FOR 1=0 TO R STEP DS
790 X=6*<R':J) + I*LX-40)
795 REM
660 V=950-6*<BCJ>+I*LV>
802 IF X<0 OR V<0 THEN 820
604 IF XM023 OR V>950 THEN 820
805 REM

134

810 POINT 3,X,V
820 NEXT I

830 NEXT J
840 GOTO 280: REM DO RGRIN
900 REM END PROORRM
910 COLOR 1,3,6,0
920 GRAPHIC
930 END
993 REM
1000 REM INPUT DRTR
1005 REM
1010 GET R*:IF fl*"»"" THEN 1010
1020 IF <RSC<R*X48 OR RSC<fl*?>57) RND R*0"„" THEN 1060
1030 Z*=Z*+R$
1035 CHRP 1S,T,R*
1040 T=T+1
1050 GOTO 1010
1060 Z=VRL<Z*>
1070 RETURN
1095 REM
1100 REM DRRW BORDER RROUND SCREEN
1105 REM
1110 POINT 3,0,0
1120 DRRW 3 TO 1023,0
1130 DRRW 3 TO 1023,930
1140 DRRW 3 TO 0,950
1150 DRRW 3 TO 0,0
1160 RETURN

RERDV.

135

S,o

u
c
CD

o

I

137

ROTATE

DESCRIPTION

In this section we introduce the concept of a transformation

matrix. A transformation matrix is essentially a set of equations

which are applied to a coordinate point in order to move it to the

required position. I shall not endeavour to derive these equations

(there are many excellent text books on the subject) simply show

how they can be used to produce the required effects. The

rotational transformation matrix consists of four equations and

these are calculated in lines 250 to 280. Lines 290-300 use the

values from this matrix to calculate the new coordinates of the

point.

Rotation requires the movement of a point in a circle around a

fixed axis on the screen. By making the point the end coordinate

of a line, a line or a shape can be rotated around this axis. The

axis of rotation can lie anywhere on the screen, it may even lie on

the same coordinates as the point to be rotated. In this program

you will notice that the small cross is being rotated in a clockwise

direction around an axis thereby describing a circle, note that the

point erase - lines 310 to 340 — was removed to produce the

diagram. Counterclockwise rotation can be produced by using a

negative angle of rotation.

RUNNING THE PROGRAM

The program requires the input of five parameters. These five are

the X and Y coordinates of the centre of rotation, the X and Y

coordinates of the point to be rotated and the angle of rotation.

The angle of rotation is in degrees and is the angle between two
lines drawn from the centre of rotation to the degree or three

o'clock position and from the centre to the new point position. It

should be noted that the FOR NEXT loop in lines 235 and 410 is

inserted to generate a sequence of 360 rotational plot points;

these should be removed to plot a single rotation.

PROGRAM STRUCTURE

35
60-70 set colours

90 draw border around screen using subroutine at 500

110-119 input coordinates for centre of rotation

1 20-1 29 input coordinates for point to be plotted

130-136 input angle of rotation

138

210 convert rotation angle from degrees to radians
215-220 initialise variables

225 plot point at centre of rotation

230 set start angle at

235 loop to plot 20 consecutive rotations

240 add angle of rotation to start angle
250-280 calculate rotational transform matrix
290-300 calculate new coordinate point position

310-340 erase previous rotated point position

350-380 plot new rotated point
410 loop to rotate again by the rotation angle
500-560 border drawing subroutine
600-660 input routine

+ +
+

+

+
+
+
+
+
+
+
+

139

1 REM ROTATE
2 REM a**********************
3 REM
16 REM THIS PROGRAM ROTATES A POINT AROUND

20 REM A CENTRAL POINT ON THE SCREEN
30 REM
35 DIM M<2.2>
40 REM
50 REM SET COLOURS
55 REM
60 GRAPHIC 2
70 COLOR 3.3.0.3
75 REM
80 REM DRAW BORDER
65 REM
90 GOSUB 500
95 REM
100 REM INPUT PARRMETERS
105 REM
110 REM COORDINATES OF CENTRE OF ROTATION
111 Z*="" : T=5
112 CHAR 19.2."?"
113 GOSUB 600
114 XC=Z:Z$=""
115 CHAR 19.T.".":T=T+1
116 GOSUB 680
117 YC=Z:FOR 1=1 TO 500: NEXT I

118 IF XC=0 OR VC=0 THEN 450
119 CHAR 19.2." " „_
120 REM COORDINATES OF POINT TO BE ROTATED

121 Z$="" ! T=5
122 CHAR 19.2."?"
123 GOSUB 600
124 XP=Z:Z*=""
125 CHAR 19.T.".":T=T+1
126 GOSUB 600
127 VP-Z
128 FOR 1=1 TO 500= NEXT I

129 CHAR 19.2."
"

130 REM ANGLE OF ROTATION
131 2*="":T=5
132 CHAR 19.2."?"
133 OOSUB 600
134 AR=Z
135 FOR 1=1 TO 500: NEXT I

136 CHAR 19.2."
195 REM
200 REM ROTATE POINT
205 REM
210 AR=AR*fr/180
215 XR=XF':VR=VP

140

217 XO=XR:VO*VR
220 XP<=-<XC-XP:>:VP=-<YC-YP>
225 POINT 3,XC,YC
230 R=0
235 FOR Q=l TO 20
240 R=R+AR
250 M<1,1)*C0S<R)
260 M<i,2)-SIN(:R>
270 M<2,1>=-SIN<R:>
280 MC2,2>=C0S<R>
290 X=XC+0 . 7* < XP*M< 1 , 1 > +VP*M < 2 , 1)

>

300 V=VC+<XP#M<1.2HVP*rii:2,2)>
310 POINT 4,X0-12,Y0
320 DRAW 4 TO X0+12,Y0
330 POINT 4,X0,Y0-12
340 DRRW 4 TO X0,Y0+12
350 POINT 3,XR-12,YR
360 DRAW 3 TO XR+12,YR
370 POINT 3,XR,YR-12
380 DRRW 3 TO XR,YR+12
390 XO=XR:VO=VR
400 XR=X:VR=V
410 NEXT Q
420 GOTO 100
450 COLOR 1,3,6,0
460 GRAPHIC
470 END
495 REM
500 REM DRRW BORDER
505 REM
510 POINT 3,0,0
520 DRAW 3 TO 0,950
530 DRRW 3 TO 1023,950
540 DRAW 3 TO 1023,0
550 DRRW 3 TO 0,0
560 RETURN
595 REM
600 REM INPUT DATA
605 REM
610 GET A*: IF fi*="" THEN 610
620 IF <ASC<A*K43 OR ASC<A*»57> AND AfO"." THEN 659
630 CHAR 19,T,R*:T=T+1
640 2*=Z*+fl$: GOTO 610
650 Z=VALXZ$>
6GQ RETURN

RERDV.

141

ROTATE 2

DESCRIPTION

In the same way that the program ROTATE rotated a point

around a fixed axis on the screen we can also rotate a line about a

fixed axis. This is not difficult since one is simply rotating two
points — the two end coordinates of the line. It should be noted

that in this program the line start and end coordinates are both

input as relative coordinates. A relative coordinate means that

the coordinate is not the normal screen coordinate but a value

which is relative to the coordinate of the axis point. If the axis is

set at the absolute screen coordinates of X = 1 00 and Y = 80
then to have the start of the line at the absolute screen

coordinates of X = 1 50 and Y = 100 gives us a relative

coordinate value of X = 50 and Y = 20. From this we can see

that the relative coordinates are obtained by this calculation:

coordinate of point — axis coordinate

RUNNING THE PROGRAM

The program requires the input of seven parameters, starting

with the X and Y coordinates of the central axis around which the

line is rotated. This is followed by the X and Y coordinates of the

start of the line and then the X and Y coordinates of the end of

the line, all four values being relative coordinates with respect to

the centre of rotation. The last parameter value is the angle of

rotation, this is in degrees and is the angle between two lines

drawn from the centre of rotation to the original dot position and

from the centre to the new dot position. Note that the FOR NEXT

loop in lines 235 and 500 has been inserted to generate a

sequence of 20 rotations of the increment angle. These should be

removed to plot a single rotation.

PROGRAM STRUCTURE

40
60-70 set colours

90 draw border around screen using subroutine at 700

110-119 input coordinates for centre of rotation

1 20-1 29 input relative coordinates for start of line

1 30-1 39 input relative coordinates for end of line

140-146 input angle of rotation

210 convert angle to radians

215 initialise variables

142

225 plot point at centre of rotation

230 set start angle at zero

loop to plot 20 consecutive rotation increments
240 add angle of rotation to start angle
250-280 calculate rotational transform matrix
290-340 calculate new coordinate point positions
360-500 routine to draw line between the two end points
510 loop to next rotation increment
700-760 border drawing subroutine
800-860 input routine

900-930 end

143

1 REM ROTATE 2
2 REM #****#*******#*******##
3 REM
10 REM THIS PROGRRM ROTATES R LINE RROUND
20 REM fl CENTRRL POINT ON THE SCREEN
30 REM
40 DIM M<2,2>
45 REM
50 REM SET COLOURS
55 REM
60 GRAPHIC 2
70 COLOR 3.3.0. 10
75 REM
86 REM DRAW EORDER AROUND SCREEN
85 REM
90 GOSUB 700
95 REM
100 REM INPUT PARAMETERS
110 REM COORDINATES OF CENTRE OF ROTATION
111 Z$="":T=5
112 CHAR 19,2,"?"
113 GOSUB 800
114 XC=Z:Z*=""
115 CHRR 19,T,",":T=T+1
116 GOSUB S00
117 VC=Z=FOR 1=1 TO 500: NEXT I

118 IF XC=0 OR VC=0 THEN 900
119 CHRR 19,2,"
120 REM RELATIVE LINE START COORDINATES
121 Z$="" : T=5
122 CHAR 19,2,"?"
123 GOSUB 800
124 XP=Z : Z*=""
125 CHAR 19,T,",":T=T+1
126 GOSUB 800
127 VP=Z
128 FOR 1=1 TO 500: NEXT I

129 CHAR 19,2," "

130 REM RELATIVE LINE END COORDINATES
131 Z*="" : T=5
132 CHAR 1-9,2,"?"

133 GOSUB 800
134 XQ=Z : Z*=""
135 CHAR 19,T,",":T=T+1
136 GOSUB 800
137 VQ=Z
138 FOR 1=1 TO 580: NEXT I

139 CHAR 19,2,"
140 REM ANGLE OF ROTATION
141 Z$="":T=5
142 CHRR 19,2,"?"

144

143 GOSUB 800
144 AR=Z
145 FOR 1=1 TO 500: NEXT I

146 CHRR 19,2/"
195 REM
200 REM ROTATE LINE
205 REM
210 RR=RR*w/180
215 XR=XP=YR=VP
225 POINT 3,XC,YC
230 R=0
235 FOR Z=l TO 26
240 R=R+AR
250 M<i,l>»COS<R>
260 M<1,2>=SIN<R>
270 M<2,1>=-SIN<R:>
280 M<2,2>=C0S<R>
290 X=XC+XP*MO , 1 >+YP*M<2, 1

>

300 Y=YC+XP*M <. 1 , 2 > +VP*M < 2 , 2 >

310 XB=X=VB-V
320 X"XC+XQ*M<1,1>+VQ*M<2<1>
330 Y=YC+XQ*M<1,2>+YQ*M<2,2:>
340 XE=X=YE=V
345 REM
350 REM BRRW LINE
355 REM
360 DS=18
370 P=XE-XB
330 Q=VE-YB
390 RL=SQR<P*P+Q*Q>
400 LX=P^RL
410 LV=Q/RL
420 FOR 1=0 TO RL STEP DS
430 X=XB+.7#<I#LX>
440 V=VB+I*LV
445 IF X<0 OR V<0 OR V>950 THEN 460
450 POINT 3,X,Y
460 NEXT I

500 NEXT 2
510 GOTO 100
695 REM
700 REM DRAW BORDER
705 REM
710 POINT 3,0,0
720 DRAW 3 TO 0,950
730 DRAW 3 TO 1023,950
740 DRAW 3 TO 1023,0
750 DRAW 3 TO 0,0
760 RETURN
795 REM

145

830 REM INPUT DATA
805 REM
810 GET A*: IF A*="" THEN 310
820 IF <RSC<R*><48 OR RSC<fl*»57> AND ASO". " THEN 850

830 CHAR 19..T,fi*:T=T+l
840 Z*=2*+A$ ' GOTO 810
850 Z«VflL<Z*>
860 RETURN
900 REM END PROGRAM
910 COLOR 1,3,6,0
920 GRAPHIC
930 END

READV.

146

ROTATE 3

DESCRIPTION

In the same way that the program ROTATE 2 rotated a line

around a fixed axis on the screen we can also rotate a shape
about a fixed axis. This is not difficult since one is simply rotating
a set of lines, each line being specified by the two end
coordinates of the line. The data for the shape is stored in a shape
table, this is stored in one of three arrays. The other two arrays
are used to store the data for the rotated shape and the previous
rotation — this is required by the routine which erases the
previous rotation. The data is stored as the beginning X and Y
coordinate of a line followed by the end X and Y coordinates of
the same line, these four values are then repeated for each line in

the shape. In this program the shape data is obtained from a set
of data statements - lines 710 to 740. The set of displays
which accompany this program show how by varying the centre
of rotation the shape is rotated in different ways, depending on
whether the rotational centre lies within the shape, directly on a
line of axis through the shape or to one side of the shape; also
shown is that the lines used to draw the shape can have a
variable dot spacing.

RUNNING THE PROGRAM

All the parameters required by the program are stored directly
within the program. The X and Y coordinates of the central axis
around which the shape is rotated are stored as the variables xc
and yc in line 250. The number of lines in the shape is stored as
variable nl in line 240. The X and Y coordinates of the start and
end of each line are stored as data statements in lines 710 to
740. The last parameter value is the angle of rotation, this is in

degrees and is stored as the variable ar in line 296.
Note: that the FOR NEXT loop in lines 300 and 620 has been

inserted to generate a sequence of fifty rotations of the
increment angle. These should be removed to plot a single
rotation. When plotting shapes with more than 20 lines then the
size of the shape data arrays should be increased accordingly.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at 900

147

110 set up array for rotation matrix

1 20-1 50 matrix for original data shape

1 60-1 90 matrix for erased shape data

210-225 matrix for displayed shape data

234-296 initialise variables and constants

240 number of lines in shape

255 plot point at centre of rotation

260-290 load coordinate data into original shape matrix

296 set start angle to zero

300 loop to plot 50 consecutive rotation increments

310 add angle of rotation to start angle

320-350 calculate rotational transform matrix

370-500 calculate new coordinate point positions

520 jump routine to erase lines

540 jump to routine to draw lines

560-610 put displayed shape data into erased shape matrix

620 loop to next rotation increment

710-740 shape table data

900-960 border drawing subroutine

1000-1 140 subroutine to draw shape

2000-2140 subroutine to erase shape

148

149

1 REM ROTRTE 3

2 REM #*#**##**##**#*****###*
3 REM
10 REM PROGRAM TO ROTATE A 2D OBJECT ABOUT

28 REM A POINT ON THE SCREEN

38 REM
40 REM
50 REM SET COLOURS
55 REM
60 GRAPHIC 2
70 COLOR 3,3.0.3
75 REM
S0 REM DRAW BORDER
85 REM
90 GOSUB 900
95 REM
100 REM ARRAYS FOR DATA TRANSFORMATION

105 REM
10S REM ROTATION MATRIX
107 REM
110 DIM M<2,2)
115 REM
116 REM ORIGINAL SHAPE DATA
117 REM
120 DIM X<20>
130 DIM V<20>
135 REM
140 DIM IK20)
150 DIM V<20>
155 REM
156 REM ERASED SHAPE DATA
157 REM
160 DIM W<20>
170 DIM Z<20>
175 REM
180 DIM SC20)
190 DIM T<20)
200 REM
•?05 REM DISPLAYED SHAPE DATA
206 REM
210 DIM O<20>
215 DIM P<28)
220 DIM GK20)
225 DIM R<20>
?"{%) REt1

234 REM SET UP CONSTANTS AND DATA FROM DATA TABLES

235 REM
240 NL=4
250 XC=450:VC*512
255 POINT 3.XC.VC
269 FOR N=l TO NL

150

270 READ X<N)AXN>,U<N),V<N>:S<N)=U<N) :T<H)=VaO
280 W<N>=X<N>:Z<N>=V<N>
290 NEXT N
296 RR=45:R=0
297 REM
298 AR=AR*tr/180
299 REM
300 FOR R=l TO 50
305 REM
310 R=R+AR
315 REM
316 REM SET UP ROTATION MATRIX
317 REM
320 M<l,l>=COS<R>
330 Ma,2>=SIN<R>
346 M<2, 1>=>-SIN<R>
350 M<2,2>=C0S<R>
360 REM
365. REM ROTATE SHAPE AR DEGREES
366 REM
370 FOR N=i TO NL
380 P=-<XC-X<N>)
390 Q=-<YC-YOD>
400 X=XC+.7*KP*Ma , 1 >+Q*M<2, 1 >)

410 Y=VC+P*Ma,2>+Q*M<:2,2>
420 0<N>=X
430 P(N>=Y
440 P=-CXC-U(H>)
450 Q=-<VC-V<N)>
460 X=XC+.7*<P*M<1,1>+Q*M<2,1>>
470 V=YC+P*M<1,2>+Q*M<2,2>
480 Q<N>=X
490 R<N)=V
500 NEXT N
510 REM
526 GOSUB 2000
530 REM
540 GOSUB 1000
550 REM
560 FOR N=l TO NL
570 W<N>=0<N>
580 ZOD=POO
590 S<N>=GKN>
600 T<N>=R<H>
610 NEXT S'

620 NEXT A
630 GET A$:IF A*="" THEN 630
640 COLOR 1,3,6,0
650 GRAPHIC
660 END
695 REM

151

700 REM SHRPE DATA
705 REM
710 DATA 512.450.512,300
720 DATA 512.200,570,300
730 DATA 570,300,455,300
740 DRTR 455,300,512,200
895 REM
900 REM DRRW BORDER
905 REM
910 POINT 3,0,0
920 DRRW 3 TO 0,1023
930 DRRW 3 TO 1023,1023
940 DRAW 3 TO 1023,0
950 DRRW 3 TO 0,0
968 RETURN
995 REM
1000 REM DRAW SHRPE
1005 REM
1010 FOR N=i TO NL

1020 DS«=6
1030 P=Q<N>-0<N>
1040 Q=R<N>-P<N>
1050 RL=SQRCP*P+Q*Q>
10S0 LX=P/'RL
1070 LV=QVRL
1080 FOR 1=0 TO RL STEP DS

1090 X=CO<N>+I*LX>
1100 V=P<N>+I*LY
1105 IF X<0 OR V<0 THEN 1120

1110 POINT 3,X,V
1120 NEXT I

1130 NEXT N
1140 RETURN
1995 REM
2000 REM ERRSE SHAPE
2005 REM
2010 FOR N=l TO NL
2020 DS=£
2030 P=SCN>-W<N>
2040 Q=TCN)-ZCN>
2050 RL=SQR<P*P+Q*Q>
2060 LX=P/RL
2070 LV=Q/RL
O0R0 FOR 1=0 TO RL STEP DS

2090 X=<W<N>+I*LX>
2100 V=ZCN>+I*LV
9105 IF X<0 OR V<0 THEN 2028

2110 POINT 4,X,V
2120 NEXT I

2130 NEXT N
2140 RETURN

152

MOVE

DESCRIPTION

The application of the transformation matrix can be expanded to
cover all manipulation of a shape, not just rotation but also
movement (known as translation) and scaling. The primary
purpose of this program is to show how a shape can be moved
about the screen, but it also embodies the capability of scaling and
rotation. The transformation matrix consists of six quotations.
These equations are stored in lines 3000 to 3100. Notice that
equations 1 to 4 consist of the rotational transform equation
multiplied by a scaling factor, equations 5 and 6 do the movement
by adding an offset to the shape position. The program can display
any two dimensional shape. This shape can be moved to any part
of the screen, rotated through 360 degrees and stretched in either
X or Y axis or both.

RUNNING THE PROGRAM

There are no input parameter values since they are all within the
program as LET statements. There are five parameter values
which control the movement, rotation or scaling of the shape;
these are set in lines 1 20 to 1 60. Lines 1 20 and 1 30 contain the
X and Y scaling factors - full size = 1, half size =.5 etc. The
rotational angle of the shape is stored as the variable rx in line 1 40,
note that since this angle must be in radians it is multiplied by
3.141 59/1 80. The movement of the shape in the X and Y axis is

stored in lines 1 50 and 1 60, and is the number of pixels in either
direction from the original coordinates stored in the shape table.
The object shape is stored in a shape table. This table consists

simply of the X and Y coordinates of the end of each line
comprising the shape. It should be noted that there are one more
pair of coordinates than there are lines in the shape, the number of
lines in the shape is stored as the variable np as the first value in

the data table. The data table is stored as data statements in lines
1 1 1 to 1 1 30. Try designing your own shapes using graph paper
and then entering the new values into the data statements.

PROGRAM STRUCTURE

60-70 set colours

90 draw border around screen using subroutine at
400

110 set up transform matrix array

153

120-130
140
150-160

210-260
400-460
1000-1050

1110-1130

2000-2080
3000-3100
4000-4070

5000-5220

X and Y scaling factors

angle of shape rotation in radians

X and Y axis movement of shape from initial

position

main program execution loop

border drawing subroutine

load shape data into arrays — arrays X and Y

contain the original shape data — arrays U and

V contain the transformed shape data

data statements containing shape data — line

110 contains the number of lines in the shape

find the centre of the shape

perform transformation matrix calculations

performs the transformation on each coordinate

point within the shape table

draws the shape using the transformed data in

the arrays U and V, note lines 51 20 and 51 30

check that the shape does not fall outside the

screen area

154

1 REM MOVE
2 REM #*##******#*#**#**#*#*#
3 REM
10 REM THIS PROGRAM USES MATRIX TRANSFORMATION TO
20 REM MOVE, ROTATE, OR SCALE A TWO DIMENSIONAL SHAPE
30 REM
40 REM
50 REM SET COLOURS
60 GRAPHIC 2
70 COLOR 3,3,0,10
75 REM
80 REM DRAW BORDER
90 GOSUB 400
95 REM
100 REM SET UP CONSTANTS, VARIABLES, AND ARRAVS
105 REM
110 DIM A<3,3>
120 SX=1
130 SV=1
140 RX=80*n/180
150 TX=-50
160 TV=2
190 REM
200 REM MAIN PROGRAM LOOP
205 REM
210 GOSUB 1000
220 GOSUB 2000
230 GOSUB 3000
240 GOSUB 4000
250 GOSUB 5000
260 GET A*: IF A$»"" THEN 260
270 COLOR 1,3,6,0
280 GRAPHIC
290 END
395 REM
400 REM DRAW BORDER
405 REM
410 POINT 3,0,0
420 DRAW 3 TO 0,1023
430 DRAW 3 TO 1023,1023
440 DRAW 3 TO 1023,0
450 DRAW 3 TO 0,0
460 RETURN
995 REM
1000 REM INITIALISE SHAPE
1005 REM
1010 READ NP
1020 DIM X<NP+l),VCNP+n,U<NP+l),V<NP+l>
1038 FOR 1=1 TO NP+1
1040 READ XU>,V<I>
1050 NEXT I

155

1090 REM
1190 REM SHRPE DRTR
1105 REM
1110 DRTR 5
1120 DRTR 100; 100/ 150> 120, 175.. ,'5

1130 DRTR 150,30, 100,50.. 100, 100

1200 RETURN
1995 REM
2000 REM FIND CENTRE OF SHRPE

2005 REM
2010 CX=0:CV=0
2020 FOR Ol TO NP
2030 CX=CX+X<C!>
2040 cv=c.v+v<c:>
2050 NEXT C
2060 CX=CX/'NP
C070 CV=CV/NP
2080 RETURN
2995 REM
3000 REM SET TRANSFORMATION MATRIX
3005 REM
r-,'010 R<i,n=sx*cos<:R2>
^020 R < 1 , 2 y -SX*S I N < RZ >

3030 REM
'

3R4PI R<C2.1>=SV*C-SIN(RZ>>
3050 fl<2,2>=SV*C0S<;RZ>
3060 REM
3070 R<3,1>=TX
3030 R<!3,2>=TV
3090 REM
3100 RETURN
3995 REM
4000 REM DO TRRNSFORMRTION
4005 REM
4010 FOR 9=1 TO NP+1
4020 xt=x<q:>-cx
4030 VT=V<Q)-CV
4040 U<Q)=CX+CXT*fl< 1 , 1 >+YT*fl<2, 1 >+R<3, 1)

>

4050 V<Q)«=CV+<XT*R< 1 , 2>+YT#fl'C2, 2>+R<3, 2> >

4060 NEXT Q
4070 RETURN
4995 REM
5000 REM DRAW SHAPE
5005 REM
5010 FOR Q=l TO NP
5020 XE=U f

, Q > ; VE=V < Q >

5030 XE=U < Q+ 1 ' ' VE=V <. Q+ 1 >

5040 p=XE-XB
5050 OaVE-VB
5060 R=SQR(P*P+0*0)
5070 LX=P/R

156

5080 LV=0/R
5890 FOR 1=0 TO R STEP 1

5100 X=G* . 7* <XE+ 1 *LX >

5110 V=1023-G*CVB+I*LV)
5120 IF X<0 OR V<0 THEN 5200
5130 IF VM023 OR XM023 THEN 5200
5150 POINT 3,X,V
5200 NEXT I

5210 NEXT Q.

5220 RETURN

RERDV.

157

s
a.
CO

Q
Q
CO

159

THREE DIMENSIONAL SHAPE 1

DESCRIPTION

The application of the transformation matrix can be expanded

further to cover the generation of three dimensional shapes — it

should be noted that they are displayed two dimensionally but

optically appear to represent three dimensional objects. To do this

simply requires the addition of an extra axis - the Z axis - to the

X and Y axis used in a two dimensional transformation matrix. The

transformation matrix consists of sixteen equations, they are

stored in lines 3000 to 31 90. I shall not attempt to explain the

mathematics, for those interested I would suggest one of the text

books on the subject - 'Principles of Interactive Graphics' by

Newman and Sproul.

RUNNING THE PROGRAM

There are no input parameter values since they are all within the

program as LET statements. There are nine parameter values

which control the movement, rotation or scaling of the shape,

these are set in lines 1 20 to 200. Lines 1 20 and 1 40 contain the

X,Y and Z scaling factors - -full size = 1 , half size = .5 etc. The

rotational angle of the shape in either one of the three axis are

stored in lines 1 80 to 200, note that since these angles must be in

radians they are multiplied by 3.141 59/1 80. The movement of

the shape in the X,Y and Z axis is stored in lines 1 50 to 1 70, and is

the number of pixels in either direction from the original

coordinates stored in the shape table.

The object shape is stored in a shape table. This table consists

of two parts the first is simply of the X,Y and Z coordinates, of

each cordner coordinate comprising the shape: The second part is

a table of connections of pairs of points between which a line

should be drawn. The number of edges in the shape is stored as

the variable 'ne' and the number of coordinate points between

which the edges are connected is stored as variable 'np'. The

coordinate table is stored as data statements in lines 1210 to

1 220, and the connection table in lines 1 3 1 to 1 330.

Note: all programs in this section require 1 6K RAM expansion.

PROGRAM STRUCTURE

50-60 set colours

80 draw border around screen using subroutine at

900

160

100-110
120-140
150-170

180-200
410-450
900-960
1000-1050

1100-1170
1200-1220

1300-1330
2000-2240
3000-3160
3200-3350
4000-4080

5000-5900

set up transform matrix arrays

X,Y and Z scaling factors

X,Y and Z axis movement of shape from initial

position

angle of X,Y and Z axis rotation in radians

main program execution loop

border drawing subroutine

load shape data into arrays — array S contains

the coordinate table of the original shape —
array E contains the line connection data —
array M contains the transformed coordinate

data

read in the shape data

data statements containing coordinate shape
data as X,Y and Z for each corner point, note

that the first three values comprise the

coordinates for point 1 , the second three for

point 2 etc

data statements containing line connection data

draw the shape
perform transformation matrix calculations

set up scaling and translation matrix

performs the transformation on each coordinate

point within the shape table

find centre of shape

161

162

1 REM 3D DRAWING 1

2 REM #**************#*•****#*
3 REM
10 REM R THREE DIMENSIONAL SHAPE IS DRAWN EV THIS PROGRAM
20 REM THE ROTATION POSITION AND SCALE OF THE OBJECT
30 REM CAN BE CHANGED TO GIVE DIFFERENT VIEWING ANGLES.
35 REM
40 REM SET COLOURS
50 GRAPHIC 2
60 COLOR 3,3,0, 10
65 REM
70 REM DRAW BORDER AROUND SCREEN
75 REM
S0 GOSUB 900
85 REM
90 REM SET UP CONSTANTS, VARIABLES, AND ARRAYS
95 REM
100 DIM A«,4>
110 DIM B<4,4>
120 SX«=.3
130 SV=.3
140 SZ=.3
150 TX=1
160 TV=1
170 TZ=1
180 RX=40*ir/160
190 RV=20*tr/ie0
200 RZsS©**/^©
400 REM MAIN PROGRRM LOOP
410 GOSUB 1000
420 GOSUB 5000
430 GOSUB 3000
440 GOSUB 4000
450 GOSUB 2000
500 GET A*: IF A*="" THEN 500
510 COLOR 1,3,6,0
520 GRAPHIC
530 END
900 REM BORDER DRAWING SUBROUTINE
905 REM
910 POINT 3,0,0
920 DRAW 3 TO 0,1023
930 DRAW 3 TO 1023,1023
940 DRAW 3 TO 1023,0
950 DRAW 3 TO 0,0
960 RETURN
995 REM
1000 REM INITIALISE SHRPE
1005 REM
1010 NP=8
1020 NE=12

163

1030 REM
1040 DIM S<3,NP>
1050 DIM E<NE,2)
1060 DIM M<3,NP!>

1100 REM
1110 FOR N-l TO HP
1120 READ S<1,N:>,S<2,N>,S<3,N>
1138 NEXT N
1140 FOR K=l TO HE
1150 RERD E<K,1>,E<K,2>
1170 NEXT K
1195 REM
1200 REM X,V,Z POINT COORDINATES
1?10 DATA 0,0,200,200,0,200,200,0,0,0,0,0
1220 DATA 0, 200. 200, 200, 200/ 200.200. 200.- 0.' 8,200,0

1235 REM
1300 REM •CONNECTION DATA
1305 REM
1310 DATA 1,2,2,3,3,4,4,1
1320 DATA 5,1,2,6,4,3,7,3
1330 DATA 6,5,5,8,8,7,7,6
1900 RETURN
1995 REM
2000 REM DRAW SHAPE
2005 REM
2020 FOR K=l TO NE
2030 V1=E<K,1>
2040 V2*E<K,2>
2045 IF V1=0 THEN 2240
2050 XB=M<1,V1>
2060 VB=M<2,Vn
2070 XE=*K1,V2>
2030 VE=M<:2,V2>
2090 DS=1
2100 P=XE-XB
2110 Q=VE-VB
2120 R*SQR<P*P+Q*Q>
2130 LX=P/R
2140 LV=Q^R
?150 FOR 1=0 TO R STEP DS

2160 X=6*0.7*<XB+I*LX>
2170 V=1023-6*<VB+I*LV)
?130 IF X<0 OR V<0 THEN 2230
2190 IF XM023 OR V>1023 THEN 2230

2220 POINT 3,X,V
2230 NEXT I

2240 NEXT K
2908 RETURN
2995 REM
3000 REM SET TRANSFORMATION MATRIX
30S5 REM

164

3010 R<1,1>=C0S<RV>*C0S<RZ>
3020 R<1,2>=C0S<RY)#SIN<RZ>
3030 R<1,3>«-SIN<RY>
3040 R(i,4>=0
3050 R<2,i)=C0S<RX>*<-SIH<RZ)>+SIN<RX)#SIN<RV>*C0S<RZ>
3060 R<2.2>aC0S<RX)*C0S<RZ>+SIN<RX>#SIH<RV)*SIN<RZ)
3070 R<2,3>=SIN<RX>*C0S<RV>
30S0 R<2,4>=0
3090 R<3,i> = <-SIN-:RX>>*<-SIH<RZrO+C0S<RX>*SIN<RV>*COS<:RZ)
3100 R<3,2)=-SIN<RX)*C0S<RZ>+C0S<RZ>#SIH<RV>*SIM<RZ>
3110 R<3,3>=C0S<RX)#C0S<:RY>
3120 R<3,4>=0
3130 R<4,1>=0
3140 R<4.2>«0
3150 fl<4,3>=0
316© R<4,4>=1
3195 REM
3200 REM SET UP SCALING AND TRANSLATION MATRIX
3205 REM
3210 Ba,i>=sx#na,i>
3220 B<1,2>=SX*R<1,2>
3230 Ba,3>=SX*fi<l,3>
3240 REM
3250 B<2,1>=SV*R<2,1>
3260 B<2,2>=SV#R'(2,,2>
3270 B<2,3>=SY*R<2,3>
3230 REM
3290 B(3,1>=SZ*R<3,1>
3300 B<3,2>=SZ*R<3,2>
3310 B<3,3>-SZ#R<3,3>
3320 REM
3330 B<4,1>=TX
3340 B<4,2>=TY
3350 B<4,3>=TZ
3900 RETURN
3995 REM
4000 REM PERFORM TRANSLATION
4005 REM
4010 FOR Q=l TO NP
4015 REM
4020 XT=S<1,D)-XC
4030 YT=S<2,Q>-YC
4040 ZT=S<3,Q)-ZC
4045 REM
4050 M<

1

, Q>=XC+<XT*BO , 1 >+YT#B<2, 1 >+ZT*B<3, 1 >+B<4, 1 >

>

4060 M<2, G)=VC+<XT*B< 1 , 2>+VT*B<2, 2>+ZT*B<3, 2>+B<4, 2? >

4070 M<3, Q>=ZC+<XT#B<1 , 3>+YT#B<2, 3>+ZT*B<3, 3>+B<4, 3)

>

4080 NEXT Q
4900 RETURN
4995 REM
5000 REM FIND CENTROID

165

5095 REM
5018 P=0:Q=0 ; R=0
5020 FOR 1=1 TO HP
5030 P=P+S'< 1 , I >

5040 Q«Q+S<2;I>
5050 R<=R+S<:3,I>
5060 NEXT I

5070 XC=P/NP
5030 VC=D/NP
5090 ZC=R/HP
5900 RETURN

REflDV.

166

THREE DIMENSIONAL SHAPE 2

DESCRIPTION

This program is identical to the program THREE DIMENSIONAL
SHAPE 1 except that an additional subroutine has been added to
remove hidden lines. Hidden lines are those lines which lie out of

sight of the viewer and are hidden behind the front surfaces. By
removing these hidden lines the shape of the object becomes
much clearer. The subroutine which checks for hidden lines is

located between line numbers 6000 and 61 40.

RUNNING THE PROGRAM

The parameters and data tables required by this program are the
same as those used for the program THREE DIMENSIONAL
SHAPE 1 , consult this program for information. Note that the
connection table now describes object faces rather than lines.

PROGRAM STRUCTURE

Lines 1 to 5995 are identical to THREE DIMENSIONAL SHAPE 1

consult for details.

6000-6 1 40 subroutine to check for hidden surfaces

167

168

1 REM 3D DRAWING 2
2 REM ###****#*****#*****#**#
3 REM
10 REM R THREE DIMENSIONRL SHRPE IS DRAWN BV THIS
20 REM PROGRRM.THE ROTATION POSITION AND SCALE OF THE
30 REM OBJECT CRN BE CHANGED TO GIVE DIFFERENT VIEWING
35 REM ANGLES. THE PROGRAM INCORPORATES A ROUTINE TO
36 REM REMOVE HIDDEN LINES
37 REM
40 REM SET COLOURS
50 GRAPHIC 2
60 COLOR 3,3,0,10
65 REM
70 REM DRAW BORDER AROUND SCREEN
75 REM
80 GOSUE 9O0
85 REM
90 REM SET UP COHSTRNTS, VARIABLES, AND ARRAVS
95 REM
100 DIM R<4,4>
110 DIM B<4,4>
115 DIM C<3>
117 DIM D<3>
120 SX=.3
130 SV=.3
140 SZ=.3
150 TX=1
160 TV=1
170 TZ«=1

180 RX=40*fl/180
180 RV=20*tr/130
200 R2=50*fr/180
400 REM MAIN PROGRRM LOOP
410 GOSUE 1000
420 GOSUE 5000
430 GOSUB 3000
440 GOSUB 4000
450 GOSUB 6000
500 GET A*: IF A$="" THEN 500
510 COLOR 1,3,6,0
520 GRAPHIC
530 END
900 REM BORDER DRAWING SUBROUTINE
905 REM
910 POINT 3,0,0
920 DRAW 3 TO 0, 1023
930 DRAW 3 TO 1023, 1023
940 DRAW 3 TO 1023,0
950 DRAW 3 TO 0,0
9GB RETURN
995 REM

169

000 REM IHITIRLISE SHRPE
005 REM
010 NP=8
020 HE=4
025 NF=6
030 REM
040 DIM S<3/NF>
050 DIM E<NF/NE/2>
060 DIM MC3,NP>
100 REM
110 FOR N=l TO HP
120 read sa,N:>,s<2,H:>,s<:3,N>
130 NEXT N
135 FOR F=l TO NF
140 FOR K=l TO NE
150 RERD E<F/K,i:>,E<F,K/2>
170 NEXT K
ISO NEXT F
195 REM
200 REM X/V/Z POINT COORDINATES
210 DRTR 0/0/200/200/0/200/200/0/0/0/0/0
220 DRTR 0,200/200/200/200.. 200/ 200/ 200/0.. 0/200/0
295 REM
300 REM CONNECTION DRTR
305 REM
310 DRTR 1/2/2/3/3/4/4/1
320 DRTR 5/1/1/4..4/8/8/5
330 DRTR 6/5/5/8/8/7/7/6
340 DRTR 2/6/6/7/7/3/3/2
350 DRTR 1/5/5/6/6/2/2/1
360 DRTR 3/7/7/8/3/4/4/3
900 RETURN
995 REM

2000 REM PRRW SHRPE
2005 REM
2020 FOR K=l TO NE
2030 Vl=€<F/K/i:>
2040 V2=E<F/K/2>
2045 IF VI =0 THEN 2240
2050 XB=Ma/Vl>
2060 VE=M<2..V1)
2070 XE=MC1.. V2)
2O30 VE=r'K2.. V2>
2030 DS=1
2100 P=XE-XB
2110 G=VE-VE
2120 R=SQR(P*P+Q*Q)
2130 LX=P/R
2140 LV=Q/R
2150 FOR 1=0 TO R STEP DS
2 1 60 y-em . 7* <. xb+ i *lx >

170

2170 V=1023-S*(VB+I*LV)
2130 IF X<0 OR VC0 THEN 2230
2190 IF KM 023 OR V>1023 THEN 2230
2220 POINT 3,X,V
2230 NEXT I

2240 NEXT K
2900 RETURN
2995 REM
3000 REM SET TRRNSFORMRTION MRTRIX
300.5 REM
3010 FK1, l>=COS<RV>*COS<RZ>
3020 r<1/2)=c0s<rv>#sin<rz>
3030 fki,3>=-sin<;rv>
3040 R<1,4)=0
3050 fl<!2.. 1)=C0S<RX)#<-SIH<:RZ>?+SIH<RX>#SIN<RV)#C0S<RZ>
326^ R<2,2)<:05<RX>#C0S<R2>+SIN<RX>*SIN<RV>#SIN<:RZ>
3070 fl<2..3)*=SIN<RX>*C0S<RV>
3080 R<2.. 4>=0
3!3?0 R<3, 1 > =<-SIN<RK»mC-SIN<f?2»+C0S<RX>*SIN(Ry>*C0S<RZ>
3100 R<3..2>=-SIfKRX)*C0S<RZ>+C0S(RZ>*SIN<RV)*SIN(RZ)
3il@ R'T3..3>=C0S<RX>*C0Stf?V>
3120 R<3.-4>*0
3130 R<4.. 1>=0
3140 R<4,2>=0
3150 R<4,3>=0
3160 R<4,4>=1
3195 REM
3200 REM SET UP SCRLING RNB TRRNSLRTION MATRIX
3205 REM
3210 Ea,l)=SX*RCl,l>
3220 E<1,2)=SX*R<1,2>
3230 BU,3>=SX*RU.. 3>
3240 REM
3250 E (2 ,

1

y=SV*R < 2 , 1 >

3260 B<2.. 2>=SV*R ,:2.. 2>
3270 E<2..3>=SV*R<2..3>
3230 REM
3290 E<3,l>=SZ*R<3,n
3300 E<3.. 2>=SZ*R'T3.. 2>
3310 B<3.. S^SZ^R^S.. 3>
3320 REM
3330 B<4, 1>=TX
3340 B<4, 2>=TV
3350 B<:4.. 3>=TZ
3900 RETURN
3935 REM
4003 REM PERFORM TRRNSLRTION
4005 REM
4010 FOR D~l TO NP
4015 REM
4020 XT=S <. 1 > Q ?' -XC

171

4030 YT=S<2,Q>-VC
4040 ZT=SC3,Q>-ZC
4045 REM
4050 MO, Q>=XC+<XT*B< h 1 >+VT#B<2, 1 >+ZT*B<3, 1 >+B<4, 1 > >

4060 M < 2. Q > <=VC+ < XT*B <1, 2 > +VT*B < 2, 2 > +ZT*B < 3, 2 > +B < 4.. 2 > >

4070 M<3.Q>=ZC+<XT*B<1..3)+VT#B<2,3?+ZT*B«:3 J 3>+B<:4,3>)

4088 NEXT G
4900 RETURN
4995 REM
5000 REM FIND CEHTROID
5005 REM
5010 P=0:Q=0:R=0
5020 FOR 1=1 TO NP
5030 p=p+sa,i>
5040 G=Q+S<2,n
5050 R=R+S<3,I>
5060 NEXT I

5070 XC=P/NP
5030 VC=Q/NP
5090 ZC=R/NP
5900 RETURN
5995 REM
6000 REM HIDDEN SURFACE CHECK
6005 REM
6010 FOR F=l TO NF
6020 FOR J=l TO 3
6030 C<J>=M<J;E<:F,l,2>:>-M<J J E<F,l/n>
6040 D<J)=M<J,E<F,2, 1>>-M<J,E<F,2,2>>
6050 NEXT J
6QG2 P1=C<2>*D<3)-CC3)#D<2)
6&7Q P2=C<3>*D"Cl>-Ca>*D<:3>
6030 P3=C<l>*D<2)-C<2>*Da>
6090 Q1=1-M<1 J E<F,1,2>)
6100 G2=1-M<2..ECF,1,2>>
6110 Q3=500-Mf.3,Ef.F,l,2>>
6120 W=P1#Q1+P2#Q2+P3*G3
6130 IF W>=0 THEN GOSUB 2OO0
6140 NEXT F
€Sm RETURN

REflDV.

172

THREE DIMENSIONAL SHAPE 3

DESCRIPTION

This program is identical to the program THREE DIMENSIONAL
SHAPE 1 except that additional subroutines have been added to

remove hidden lines, and to shade the faces of the displayed

surfaces in respect of incident light coming from above in the Y
axis. By shading the surfaces the viewer becomes fully aware of

the shape of the three dimensional object as well as adding realism

to the display.

RUNNING THE PROGRAM

The parameters and data tables required by this program are the

same as those used for the program THREE DIMENSIONAL
SHAPE 2, consult this program for information.

PROGRAM STRUCTURE

Lines 1 to 5995 are identical to THREE DIMENSIONAL SHAPE 1

consult for details.

6000-6 1 40 subroutine to check for hidden surfaces
7000-7330 shade the displayed surfaces

173

174

1 REM 3D DRRWING 3
2 REM ***********************
3 REM
10 REM R THREE DIMENSIONAL SHAPE IS DRRWN BV THIS
20 REM PROGRAM. THE ROTATION POSITION AND SCALE OF THE
30 REM OBJECT CRN BE CHANGES Tb GIVE DIFFERENT VIEWING
35 REM ANGLES. THE PROORRM INCORPORATES A ROUTINE TO
36 REM REMOVE HIDDEN LINES. THE PI3PLRVED FACES ARE
37 REM SHADED IN RESPECT Or INCIDENT LIGHT COMING
33 REM FROM ABOVE IN THE Y-RXIS.
39 REM
40 REM SET COLOURS
30 GRAPHIC 2
60 COLOR 3,3,0,10
65 REM
70 REM DRAW BORDER AROUND SCREEN
75 REM
S'0 GOSUE 9O0
35 REM
90 REM SET UP CONSTANTS.. VARIABLES, AND RRRAVS
95 REM
100 DIM FK4,4>
110 DIM B<4,4)
115 DIM C<3>
117 DIM B<3>
120 SX=.3
130 SV=.3
140 SZ=.3
150 TX=1
160 TV=1
170 TZ=1
ISO RX=40*n/>160
190 RV=20*fr/190
200 R2=5O*Tr/130
400 REM MAIN PROGRAM LOOP
410 GOSUE 1000
420 GOSUB 5000
430 GOSUE 3000
440 GOSUB 4000
450 GOSUB 6000
500 GET Af -IF A*="" THEN 500
510 COLOR 1,3,6,0
520 GRAPHIC
530 END
900 REM BORDER DRAWING SUBROUTINE
905 REM
910 POINT 3,0,0
920 DRAW 3 TO O, 1023
930 DRAW 3 TO 1023,1023
940 DRAW 3 TO 1023,0
250 DRAW 3 TO 0,0

175

960 RETURN
«95 REM
000 REM INITIALISE SHAPE
085 REM
010 HP=8
020 HE=4
025 NF=6
030 REM
040 DIM 3<3,NP>
050 DIM E<NF,NE.2!>
060 DIM M<3,NP>
100 REM
110 FOR N=l TO HP
120 RERD S<C1,N?,S<2,H>,S<:3,H>
130 NEXT H
135 FOR F=l TO HF
140 FOR K=l TO HE
150 RERD E<:F,K,1>,ECF,K J 2>
170 NEXT K
130 NEXT F
195 REM
200 REM X,V,Z POINT COORDINATES
210 DRTR 0.. 0.. 200,200.0.. 200.. 200.0.. 0.- 0/0..

220 DRTR 0.200.200.200.. 200. 200, 200. 200.. 0..0.. 200..

O

295 REM
300 REM CONNECTION DRTR
305 REM
310 DRTR 1.2.2.3.3.4.4,1
320 DRTR 5. 1,1.4,4.3. 8.

5

330 DRTR 6.5.5.8.3.7.7.6
340 DRTR 2,6,6,7.7.3.3,2
350 DRTR 1.5.5.6,6,2,2.1
360 DRTR 3.7.7.8,8,4,4,3
900 RETURN
995 REM

2000 REM DRRW SHRPE
2005 REM
2020 FOR K=l TO NE
2030 V1=E(F,K,1)
2040 V2=E<F,K,2?
2045 IF V1=0 THEN 2240
2050 XB=M<1,V1)
2060 VE=MiC2.Vl>
2070 XE=*K1,V2>
2030 VE=M<2,V2>
2090 DS=1
2100 F--XE-XB
2110 Q=VE-VE
2120 R=SQR<P*P+Q*Q)
2130 LX=P/R
2140 LV-Q/R

176

2150 FOR 1=0 TO R STEP DS
2160 X=S*0„7*O<:E+I*LX>
2170 V=1023-6*<VE+I#LV?
2180 IF X<0 OR V<9 THEN 2230
2190 IF XM023 OR VM023 THEN 2230
2228 POINT 3,X,V
2230 NEXT I

2240 NEXT K
2300 OOSUB 7000
290O RETURN
2995 REM
3000 REM SET TRANSFORMATION MATRIX
3005 REM
3010 fi(L i>=coscrv>*cosi;rz>
3020 R f

, 1 .. 2 ; =COS <. RV > *S I r-K RZ >

3030 R(1,3?=-SIN<RV>
3O40 R<1,4>=0
3050 r<2.. i?=cos<:rx?#(-e:in<:rz))+sini:rx>*sin<rv>*cos<:rz>
3060 R(2.. 25=cos<rx>*cos<rz)+sin<:rx>*sin<rv?*sin<:rz)
3070 R f, 2 , 3 > =S I N < RX > *£GS < RV >

30S0 R<:2.. 4>=0
3^3^ r<3.. 1 >=<-sin<rx> >*(-sihkrz.'»+cos<rx>*sin<rv>*cos<rz>
3100 r<3.. 2>=-sin<:rx>*cos<:rz>+cos<rz>*sin<;rv)*sin<:rz>
3110 R<3^3?=C0S<RX)#C0S<RV>
3120 R(3,4J=0
3130 R(4,l>=0
3140 fl<4,2>=0
3150 R(4..3>=0
3160 FK4,4> = 1

3195 REM
320O REM SET UP SCALING RNB TRRHSLRTION MRTRIX
3205 REM
3210 Ba,i>=sx*fl<:i,

n

3220 B<1.. 2>=SX*R<1 .. 2>
3230 B<1 .. 3>=SXH'R'C1 .'3>

3240 REM
3250 B<2,1>«SV*R<2,1>
3260 B<2.< 2>=SV#R<2;2)
3279 B<2,3>=SV*R<:2,3>
3280 REM
3290 E <'. 3 , 1 > =SZ*fl < 3 , 1 >

3300 B (3 .. 2 > =SZ*fl <. 3 .• 2 >

3310 E < 3 .. 3 > =SZ*R < 3 , 3 >

3320 REM
3330 B<4.. 1>=TX
3340 B<4, 2>=TV
3350 EC4^3>=TZ
3900 RETURN
3995 REM
4000 REM PERFORM TRRNSLRTION
4005 REM

177

4010 FOR CN1 TO HP
4015 REM
4020 XT=Sa,Q>-XC
4039 VT=S<2,Q>-VC
4040 ZT»S<3.Q>-ZC
4045 REM
4850 M<liQ>-XC+<XT*Ba,l>+VT*B<2,l>+ZT#B<3,l>+B<4,l>>
40SPI M < 2 . Q *' =VC+ >: XT*B < 1 , 2 >+VT#B < 2 , 2 >+ZT*B < 3 .. 2 > +B < 4 ,

2 > >

4070 M<3..Q>=ZC+<XT#B<1,3>+VT*B<2,3>+ZT#B<3,3>+B<4,3:>>
4030 NEXT Q
4900 RETURN
4995 REM
5000 REM FIND CENTROID
5005 REM
5010 P=0:Q=0 : R=0
5020 FOR 1=1 TO NP
5030 P=P+S<1,I>
5040 Q=Q+S<!2,I>
5050 R=R+S<3,I>
5060 NEXT I

5070 XC=F/NP
5030 VC=Q/NP
5090 ZC=R/NP
5900 RETURN
5995 REM
£.000 REM HIDDEN SURFACE CHECK
6005 REM
6010 FOR F=l TO NF
6026 FOR J=l TO 3
6030 C<J>=*KJ,E<F,1,2>>-M<J,E<F,1,1>>
6040 D<J>=MO.ECF,2,l))-M<'.J..E<:F,2,2)>
6850 NEXT J
6S6Q P1=C<2>*D(3>-C<3>#D<2)
6070 P2=C<3>*D<l)-Ca>*D<:3)
6030 P3=C<l>*D<2>-C<2>#Da>
6098 Ql = l-Ma.E<:F,l,2)>
6108 q2=i-m<2,e<:f, 1,2:0
6110 Q3=500~M<3,E<F,1,2:>>
6128 W=P1*Q1+P2*Q2+P3*Q3
6138 IF W>=8 THEN OOSUB 2380
6148 NEXT F
6908 RETURN
6995 REM
7800 REM SHADING
7805 REM
7810 Rl=Ma,E(F..2,l>)-Ma,E<:F, 1, 1>>

7020 R2=M<2..E«F..2.. 1 >>-M<2, E<F.. 1.. i>>

7830 R3=M<3.. E<F,2.. 1 > >-M<3, E<F, 1 .• 1 '> '>

7840 W1=SG!R<R1*R1+R2*R2+R3*R3>
71*53 R4=Ma,E<F,4, 1 >>-M<l , E<F, 1 , 1 5>

7868 R5=M<2,ECF,4,1>)-M<2/E<F, 1 , 1 > >

178

7076 RS=M<3,E<F,4,n>-M<3,E<F,l,i>>
7030 W2=SQR<R4*R4+R5*R5+R6*RS>
7090 R1=R1/W1
7100 R2=R2/W1
7110 R3=R3/W1
7120 R4=R4/U2
7130 R5=R5/W2
7140 RS=R6/W2
7150 U=R3*R4-R1*RS
7160 IF U<=-.9 THEN RETURN
7170 IF U>-.9 AND U<-.5 THEN DS=3
7190 IF U>-.5 AND U<. 1 THEN BS=6
7220 IF U>.1 AND IK. 5 THEN DS=4
7240 IF U>.5 THEN BS=2
7270 FOR 1=1 TO HI STEP BS
7230 FOR G=l TO W2 STEP DS
7290 X=6*0. 7*(M(1 , E<F, 1 , 1 > >+I*Rl+Q*R4>
7300 V=1023-S*<M<2,E<F,1.. 1>> + I*R2+Q*R5:
7310 IF X<8 OR V<!6 THEN7340
7320 IF V>1023 OR "O1023 THEN 7340
7330 POINT 3.X/V
7340 NEXT Q
7350 NEXT I

7900 RETURN

REflDV.

179

THREE DIMENSIONAL SHAPE 4

DESCRIPTION

Perspective is that property of viewing an object which makes

objects appear smaller the further away they are from the viewer.

When looking down a long pole the pole appears to be tapered, but

our understanding of the real world tells us that this is not so. Thus

to add realism to a three dimensional computer display it is often

desirable to add perspective to the display, this program is

identical to the program THREE DIMENSIONAL SHAPE 1 except

that an additional subroutine has been added to remove hidden

lines, and the drawing routine has been modified to incorporate

the hidden perspective algorithm.

RUNNING THE PROGRAM

The parameters and data tables required by this program are the

same as those used for the program THREE DIMENSIONAL

SHAPE 2, consult this program for information.

PROGRAM STRUCTURE

Lines 1 to 5995 are identical to THREE DIMENSIONAL SHAPE 1

consult for details, except for the following:

2000-2240 shape drawing routine incorporating perspective

algorithm in lines 2030 to 2045
6000-6 1 40 subroutine to check for hidden surfaces

180

I

"

/
181

1 REM 3D DRRWING 4
2 REM ***********************
3 REM
in REM A THREE DIMENSIONAL SHAPE IS DRAWN EV THIS
OB REM PROGRAM. THE ROTATION POSITION AND SCALE OF THE
9PI RFM OBJECT CAN BE CHANGED TO GIVE DIFFERENT VIEWING
-,=; RF ri fiNPLER.THF PROGRAM INCORPORATES R ROUTINE TO
3R REM REMOVE HIDDEN LINES. THE OBJECT IS DISPLAYED WITH

39 REM PERSPECTIVE.
40 REM SET COLOURS
SO ORRFHIC 2
60 COLOR 3.3,0,1?
65 REM
70 REM DRAW BORDER AROUHB SCREEN
75 REM
80 GOSUB 900
05 REM
90 REM SET UP CONSTANTS, VRRIRBLES, AND RRRAVS
95 REM
10O DIM fl<4,4>
110 DIM B<!4,4>
115 DIM C<3>
117 DIM B<3>
120 SX=. 1

130 SV=.

1

140 SZ=.4
150 TX=-20
160 TV=-50
170 TZ=1
180 RX=l*ff/180
190 RV=l*tr^ie0
200 RZ=l*fr/lS0
400 REM MAIN PROGRAM LOOP
410 GOSUB 1000
420 GOSUB 5000
430 GOSUB 3000
440 GOSUB 4000
45R GOSUB 6000
500 GET A*: IF R$="" THEN 500
510 COLOR 1,3, 6,0
520 GRAPHIC
530 END
900 REM BORDER DRRWING SUBROUTINE
905 REM
910 POINT 3,0,0
920 DRRW 3 TO 0,1023
930 DRRW 3 TO 1023,1023
940 DRAW 3 TO 1023,0
950 DRRW 3 TO 0,0
ci60 RETURN
995 REM

182

1000 REM INITIALISE SHAPE
1005 REM
1010 NP=S
1020 HE=4
1025 NF=S
1030 REM
1040 DIM SC3.NP)
1050 DIM ECHF.NE,2>
1060 DIM M<3.NP>
1100 REM
1110 FOR N=l TO HP
1120 READ Sa.N>.S<2.N>.S<3.N>
1130 NEXT N
1135 FOR F=l TO HF
1140 FOR K=l TO HE
1150 READ E<F.K. 1>.E<:F.K.2>
1170 NEXT K
1130 NEXT F
1195 REM
1200 REM X.V.Z POINT COORDINATES
1210 DATA 0.0.200. 200. 0.200. 200. 0.0. 0.0.0
1220 DATA 0.200. 200. 2PIPI. 200. 20^.2*0. 200. 0.0..200.0
1295 REM
13O0 REM CONNECTION DATA
1305 REM
1310 DATA 1..2. 2.. 3.. 3.. 4.. 4.. 1

1320 DATA 5. 1.1 .4.. 4.. 3. 3.

5

1330 DATA 6. 5. 5. 8. 3. 7. 7.

6

1340 DATA 2. 6. 6. 7. 7. 3. 3.

2

1350 DATA 1.5. 5. 6, 6, 2. 2.1
13S0 DATA 3. 7. 7. 3. 3. 4. 4.

3

1900 RETURN
1995 REM
2000 REM DRAW SHAPE WITH PERSPECTIVE
2005 REM
2O20 FOR K=l TO NE
2030 vi=e<:f.k. i:>

2033 PE=ABS<300/<MC3.Vl)-300?')
2040 V2=E(F..K.2>
2043 PF=ABS < 300/ CM C 3 . V2)-300)

>

2045 IF V1=0 THEN 2240
2050 XE=PE*Ma .VI)
2OC0 VE=PE*M f 2 . V 1 *>

2070 XE=PF*Ma!. V2)
20S3 VE=FF*M (. 2 . V2)

2090 DS=1
2100 P=XE-XB
2110 Q=VE-VB
2120 R=SORCP*P+C!*Q>
2130 LX=P/R
2140 LV=Q/R

183

91 50 FOR 1=0 TO R STEP DS

2160 X=e#0.7#<XE+I*LX>
9170 V=1623-6*<VE+I*LV>
9 130 IF X<0 OR V<@ THEN 2230

2190 IF X>1023 OR VM023 THEN 2230

2220 POINT 3.. X..V

2230 NEXT I

2240 NEXT K
2900 RETURN
2995 REM
3000 REM SET TRANSFORMATION MATRIX
3005 REM
'-(010 fid,l>»COS<RV>#COS<RZ>
3PI20 fl<l,2>*C0S<RV>*SIN<R2>
3030 R<1,3>«-SIH<RV>

?0TO fl<?'l>"cOS<RK>*<-SIK<RZn+SIN<RK>#SIN<RV>*COS<RZ>
^060 fl<2, 2>-C03<RX>#C0S<RZ>+SIN<RX>»SlN<RV»liSIN<Ri>
3070 n<2,S>-SINCRX)K:C0S<RVJ
^aSQ fl<2>4>=0
^090 ro.h-<-SIN<RX>>#<-SIN<RZ>>+CC8<RX>*3IN<RV>#C0S<RZ
3100 fl<3^2>=-SIN<RX>*C0S<R2>+C0S<RZ>VSIK<RV>*SINCRZ>
3110 FK3,3>=COS<RX!>*COS<RY>
3120 R<3,4>=0
3130 R<4,1>=0
3140 R<4,2>=0
3150 R<4,3>=0
3160 A<4,4>=1
3195 REM
3200 REM SET UP SCALING AND TRANSLATION MATRIX

3205 REM
3210 B<1, i>=SX*A<l, 1>

3220 BO/2>=SX*R0..2>
3230 B<1,3>=SX*A<1..3>
3240 REM
3250 B<2, n=SV*A<:2.. 1)

3260 B<2,2:>=SV*fl<:2,2>
3270 BC2,30=SV*A<:2.. 3)
3280 REM
3290 B<3, n=SZ*AC3.. 1 >

3300 B<3.. 2>=SZ*A<3.. 2)

3310 B<3,3>=S2*FK3,3>
3320 REM
3330 B<4, 1>=TX
3340 B<4,2>=TV
3358 B<4,3>=TZ
3900 RETURN
3995 REM
4000 REM PERFORM TRANSLATION
40S5 REM
4010 FOR G!=l TO HP

184

4815 REM
4820 XT=Sa,Q>-XC
4030 VT=S<2,Q>-VC
4040 ZT=S<3,Q>-ZC
4845 REM
4058 Ma,Q>=XC+':XT*B<l,l>+VT*B<;2,l>+ZT*BC3,l>+B<4,l?>
4868 M'C2..Q)=VC+<XT*Ba..2>+VT#B<2..2>+ZT*B<;3..2)+B';4..2)>
4870 M<3, Q>=ZC+<XT*B< 1 , 3>+YT*B<2, 3>+ZT*B<3, 3>+B<4, 3))

4059 HEXT Q
4900 RETURN
4995 REM
5809 REM FIND CENTRQIB
5085 REM
5810 P=0:Q=0:R=0
5020 FOR 1=1 TO NP
5830 P=P+S<i,I>
5040 Q=Q+S(2,I>
5050 R=R+SC3,I>
5060 NEXT I

5070 XC=P/NP
5838 VC=QyNP
5890 ZC=R/'NP
5900 RETURN
5995 REM
6008 REM HIDDEN SURFACE CHECK
6005 REM
6018 FOR F=l TO NF
6828 FOR J=l TO 3
6030 c<j>=m<.j,e<f,i,2>:>-m<:j,e<:f,i,i>>
6040 d<j>=m<j,e<:f,2,i>:>-m<:.;,e<:f,2,2>>
6058 NEXT J
6Q62 P1=C(2)*D(3)-C<:3>*D<2>
6070 P2=CC3>*D<1)-Ca>*n<3>
6838 P3=Ca>*DC2>-C<2)*Da>
&Q9B Ql = l-MO,E<F,l,2>>
6180 Q2=1-M<2,ECF,1,2:>>
6110 Q3=500-M<3,E<F,1,2>>
6120 W=P1*Q1+P2*Q2+P3*G!3
6138 IF W>=0 THEN OOSUB 2000
6140 NEXT F
69m RETURN

185

INDEX

Arc1_ .71

Big Character 1 12

Character Building
106

Circle 63
Colour Control 6
Colours 26

5ComputerArt

Disk 1 75

Ellipse.

Fan

67

12

Graph. 88

Hidden Lines 767
High Resolution 30
Hi-Res Cursor 100
Hi-Res Cursor'L-IOI

Interpolate.

Line

Map—
Move.

_95

-44

-16
753

Perspective.

Piechart
Polygon 1

Polygon 2

.750

-83
-51
54

Rainbow.
Random Colours
Rectangle 1

Rectangle 2
Rota te 738

19

14

48
58

Rotate 2.

Rotate 3.

Scale 1

Scale 2
Segment
Shading-
Stretch 7_

Stretch 2^

.142

.147

118
.122

-79
173
126
131

Three Dimension
Graph 92
Three Dimension 1

7 60
Three Dimension 2

767
Three Dimension 3

7 73
Three Dimension 4

78

Duckworth Personal Computing series

VIC Graphics
Written by Nick Hampshire, author of many books on popular

computing and publisher of Commodore Computing International, this

book provides the reader with an introduction to programming
techniques used to generate graphics displays on a Commodore VIC.

Topics covered include:

• Using colour
• Two dimensional shape plotting

• Shape plotting
• Shape scaling and stretching
• Shape movement
• Shape rotation
• Plotting using matrix manipulation
• Three dimensional shape plotting

Vic Graphics is a must for every VIC user who wishes to use the

machine to its maximum graphics display potential.

Duckworth
The Old Piano Factory
43 Gloucester Crescent, London NW1

ISBN 7156 1702 8

INUKONLYE6.95NET

AMJIAAA

'>.•,.•.

"* -•-•--'

>•-• !> VkVAV/.

h

'Or*

°t>rn "to*a *
<n {ht

Vrs^ ^,r
*in

°o* ^

SffiPv:::-:-
Bfi oSsx?*»•"••"•
DC CO • i**i»*j**-
VvYii i ••*'-«

'-,V.V. .

,

-_-_»_ » • • i

'.v.v.v.v,
- ,...«.-.•.

(V.V.V

^.'.^•.^VA^•.v.^•.^^

